000907014 001__ 907014
000907014 005__ 20240711085659.0
000907014 0247_ $$2doi$$a10.1149/1945-7111/ac5348
000907014 0247_ $$2ISSN$$a0013-4651
000907014 0247_ $$2ISSN$$a0096-4743
000907014 0247_ $$2ISSN$$a0096-4786
000907014 0247_ $$2ISSN$$a1945-6859
000907014 0247_ $$2ISSN$$a1945-7111
000907014 0247_ $$2ISSN$$a2156-7395
000907014 0247_ $$2Handle$$a2128/31067
000907014 0247_ $$2WOS$$aWOS:000759829900001
000907014 037__ $$aFZJ-2022-01810
000907014 082__ $$a660
000907014 1001_ $$0P:(DE-Juel1)176806$$aNur, Khushnuda$$b0$$eCorresponding author
000907014 245__ $$aCold Sintered LiMn2O4 for High-Rate Capability Electrodes
000907014 260__ $$aBristol$$bIOP Publishing$$c2022
000907014 3367_ $$2DRIVER$$aarticle
000907014 3367_ $$2DataCite$$aOutput Types/Journal article
000907014 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1650948026_29873
000907014 3367_ $$2BibTeX$$aARTICLE
000907014 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907014 3367_ $$00$$2EndNote$$aJournal Article
000907014 520__ $$aThis study provides for the first time a detailed investigation of the cold sintering of LiMn2O4 (LMO). Aqueous based cold sintering aid facilitated densification of LMO at lower temperature range of 400 °C to 600 °C within a dwell time of merely 1 min to the relative density of 70%–80%, without any non—stoichiometry or the need of post annealing in air atmosphere. Connected porosity was observed in the cold sintered structure as confirmed by Mercury porosimetry and scanning electron microscopy analysis. Cold sintered and dry milled LMO delivered a specific discharge capacity of 121 mAh g−1 for the first discharge cycle at 0.1 C with an appreciably low capacity drop to 107 mAh g−1 at 15 C. In contrast, LMO powder, without any cold sintering treatment, provided merely 84 mAh g−1 at 0.1 C as initial discharge capacity and only 6 mAh g−1 at 2 C. This difference was interpreted as the removal/thinning of insulating Li2CO3 layer from the LMO particles after being cold sintered as confirmed by X-ray diffraction, thermal analysis and Raman spectroscopy.
000907014 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000907014 536__ $$0G:(GEPRIS)319339707$$aDFG project 319339707 - Diffusionsgesteuerte Prozesse in polykristallinem Ceroxid: Kombinierte Wirkung von elektrischem Feld und mechanischer Belastung $$c319339707$$x1
000907014 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907014 7001_ $$0P:(DE-Juel1)177016$$aRoitzheim, Christoph$$b1$$ufzj
000907014 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b2$$ufzj
000907014 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b3$$ufzj
000907014 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b4$$ufzj
000907014 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/1945-7111/ac5348$$gVol. 169, no. 2, p. 020556 -$$n2$$p020556 -$$tJournal of the Electrochemical Society$$v169$$x0013-4651$$y2022
000907014 8564_ $$uhttps://juser.fz-juelich.de/record/907014/files/Invoice_8200513.pdf
000907014 8564_ $$uhttps://juser.fz-juelich.de/record/907014/files/Nur_2022_J._Electrochem._Soc._169_020556.pdf$$yOpenAccess
000907014 8767_ $$88200513$$92022-03-29$$aBelegnr. 1200178767$$d2022-03-31$$eHybrid-OA$$jZahlung erfolgt$$züber Kostenstelle!
000907014 909CO $$ooai:juser.fz-juelich.de:907014$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000907014 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176806$$aForschungszentrum Jülich$$b0$$kFZJ
000907014 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177016$$aForschungszentrum Jülich$$b1$$kFZJ
000907014 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b2$$kFZJ
000907014 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b3$$kFZJ
000907014 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b4$$kFZJ
000907014 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000907014 9141_ $$y2022
000907014 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907014 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000907014 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907014 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000907014 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-26
000907014 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-26
000907014 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-26
000907014 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-26
000907014 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-26
000907014 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SOC : 2021$$d2022-11-26
000907014 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-26
000907014 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-26
000907014 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000907014 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000907014 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000907014 915pc $$0PC:(DE-HGF)0115$$2APC$$aTIB: The Electrochemical Society 2022
000907014 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000907014 9801_ $$aAPC
000907014 9801_ $$aFullTexts
000907014 980__ $$ajournal
000907014 980__ $$aVDB
000907014 980__ $$aUNRESTRICTED
000907014 980__ $$aI:(DE-Juel1)IEK-1-20101013
000907014 980__ $$aAPC
000907014 981__ $$aI:(DE-Juel1)IMD-2-20101013