001     907136
005     20230123110611.0
024 7 _ |a 10.3389/fpls.2022.832304
|2 doi
024 7 _ |a 2128/31184
|2 Handle
024 7 _ |a altmetric:123149707
|2 altmetric
024 7 _ |a pmid:35251103
|2 pmid
024 7 _ |a WOS:000770923700001
|2 WOS
037 _ _ |a FZJ-2022-01861
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Chiewchankaset, Porntip
|0 P:(DE-HGF)0
|b 0
|e First author
245 _ _ |a Effective Metabolic Carbon Utilization and Shoot-to-Root Partitioning Modulate Distinctive Yield in High Yielding Cassava Variety
260 _ _ |a Lausanne
|c 2022
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1652700262_15257
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Increasing cassava production could mitigate one of the global food insecurity challenges by providing a sustainable food source. To improve the yield potential, physiological strategies (i.e., the photosynthetic efficiency, source-to-sink carbon partitioning, and intracellular carbon metabolism) can be applied in breeding to screen for superior genotypes. However, the influences of source-to-sink carbon partitioning and carbon metabolism on the storage root development of cassava are relatively little understood. We hypothesized that carbon partitioning and utilization vary modulating the distinctive storage root yields of high and low-yielding cassava varieties, represented in this study by varieties Kasetsart 50 (KU50) and Hanatee (HN), respectively. Plant growth, photosynthesis measurements, soluble sugars, and starch contents of individual tissues were analyzed at different developmental stages. Also, the diurnal patterns of starch accumulation and degradation in leaves were investigated through iodine staining. Despite a comparable photosynthetic rate, KU50 grew better and yielded greater storage roots than HN. Interestingly, both varieties differed in their carbon partitioning strategies. KU50 had a high photosynthetic capacity and was better efficient in converting photoassimilates to carbon substrates and allocating them to sink organs for their growth. In contrast, HN utilized the photoassimilates at a high metabolic cost, in terms of respiration, and inefficiently allocated carbon to stems rather than storage roots. These results highlighted that carbon assimilation and allocation are genetic potential characteristics of individual varieties, which in effect determine plant growth and storage root yield of cassava. The knowledge gained from this study sheds light on potential strategies for developing new high-yielding genotypes in cassava breeding programs.
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Thaiprasit, Jittrawan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kalapanulak, Saowalak
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wojciechowski, Tobias
|0 P:(DE-Juel1)156560
|b 3
|u fzj
700 1 _ |a Boonjing, Patwira
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Saithong, Treenut
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.3389/fpls.2022.832304
|g Vol. 13, p. 832304
|0 PERI:(DE-600)2613694-6
|p 832304
|t Frontiers in plant science
|v 13
|y 2022
|x 1664-462X
856 4 _ |u https://juser.fz-juelich.de/record/907136/files/fpls-13-832304.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:907136
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156560
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT PLANT SCI : 2021
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-12T10:38:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-12T10:38:44Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-05-12T10:38:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2022-11-10
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b FRONT PLANT SCI : 2021
|d 2022-11-10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21