Journal Article FZJ-2022-01861

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Effective Metabolic Carbon Utilization and Shoot-to-Root Partitioning Modulate Distinctive Yield in High Yielding Cassava Variety

 ;  ;  ;  ;  ;

2022
Frontiers Media Lausanne

Frontiers in plant science 13, 832304 () [10.3389/fpls.2022.832304]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Increasing cassava production could mitigate one of the global food insecurity challenges by providing a sustainable food source. To improve the yield potential, physiological strategies (i.e., the photosynthetic efficiency, source-to-sink carbon partitioning, and intracellular carbon metabolism) can be applied in breeding to screen for superior genotypes. However, the influences of source-to-sink carbon partitioning and carbon metabolism on the storage root development of cassava are relatively little understood. We hypothesized that carbon partitioning and utilization vary modulating the distinctive storage root yields of high and low-yielding cassava varieties, represented in this study by varieties Kasetsart 50 (KU50) and Hanatee (HN), respectively. Plant growth, photosynthesis measurements, soluble sugars, and starch contents of individual tissues were analyzed at different developmental stages. Also, the diurnal patterns of starch accumulation and degradation in leaves were investigated through iodine staining. Despite a comparable photosynthetic rate, KU50 grew better and yielded greater storage roots than HN. Interestingly, both varieties differed in their carbon partitioning strategies. KU50 had a high photosynthetic capacity and was better efficient in converting photoassimilates to carbon substrates and allocating them to sink organs for their growth. In contrast, HN utilized the photoassimilates at a high metabolic cost, in terms of respiration, and inefficiently allocated carbon to stems rather than storage roots. These results highlighted that carbon assimilation and allocation are genetic potential characteristics of individual varieties, which in effect determine plant growth and storage root yield of cassava. The knowledge gained from this study sheds light on potential strategies for developing new high-yielding genotypes in cassava breeding programs.

Classification:

Contributing Institute(s):
  1. Pflanzenwissenschaften (IBG-2)
Research Program(s):
  1. 2171 - Biological and environmental resources for sustainable use (POF4-217) (POF4-217)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-2
Workflow collections > Public records
Publications database
Open Access

 Record created 2022-04-06, last modified 2023-01-23


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)