001     907162
005     20230123101912.0
024 7 _ |a 10.1103/PhysRevX.11.011035
|2 doi
024 7 _ |a 2128/31007
|2 Handle
024 7 _ |a altmetric:100472927
|2 altmetric
024 7 _ |a WOS:000620021000001
|2 WOS
037 _ _ |a FZJ-2022-01871
082 _ _ |a 530
100 1 _ |a Lam, Manolo R.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Demonstration of Quantum Brachistochrones between Distant States of an Atom
260 _ _ |a College Park, Md.
|c 2021
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1649394926_13301
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Transforming an initial quantum state into a target state through the fastest possible route—a quantum brachistochrone—is a fundamental challenge for many technologies based on quantum mechanics. In two-level systems, the quantum brachistochrone solutions are long known. These solutions, however, are not applicable to larger systems, especially when the target state cannot be reached through a local transformation. Here, we demonstrate fast coherent transport of an atomic wave packet over a distance of 15 times its size—a paradigmatic case of quantum processes going beyond the two-level system. Our measurements of the transport fidelity reveal the existence of a minimum duration—a quantum speed limit—for the coherent splitting and recombination of matter waves. We obtain physical insight into this limit by relying on a geometric interpretation of quantum state dynamics. These results shed light on a fundamental limit of quantum state dynamics and are expected to find relevant applications in quantum sensing and quantum computing.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Peter, Natalie
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Groh, Thorsten
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Alt, Wolfgang
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Robens, Carsten
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Meschede, Dieter
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Negretti, Antonio
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Montangero, Simone
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Calarco, Tommaso
|0 P:(DE-Juel1)176280
|b 8
|u fzj
700 1 _ |a Alberti, Andrea
|0 P:(DE-HGF)0
|b 9
|e Corresponding author
773 _ _ |a 10.1103/PhysRevX.11.011035
|g Vol. 11, no. 1, p. 011035
|0 PERI:(DE-600)2622565-7
|n 1
|p 011035
|t Physical review / X
|v 11
|y 2021
|x 2160-3308
856 4 _ |u https://juser.fz-juelich.de/record/907162/files/PhysRevX.11.011035.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:907162
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Institut für Angewandte Physik, Universität Bonn, 53115 Bonn, Germany
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Institut für Angewandte Physik, Universität Bonn, 53115 Bonn, Germany
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Institut für Angewandte Physik, Universität Bonn, 53115 Bonn, Germany
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Institut für Angewandte Physik, Universität Bonn, 53115 Bonn, Germany
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Institut für Angewandte Physik, Universität Bonn, 53115 Bonn, Germany
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Institut für Angewandte Physik, Universität Bonn, 53115 Bonn, Germany
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Zentrum für Optische Quantentechnologien, Fachbereich Physik, and The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Dipartimento di Fisica e Astronomia “G. Galilei,” Universit`a degli Studi di Padova, and Istituto Nazionale di Fisica Nucleare, 35131 Padova, Italy
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)176280
910 1 _ |a Institut für Angewandte Physik, Universität Bonn, 53115 Bonn, Germany
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV X : 2019
|d 2021-01-27
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b PHYS REV X : 2019
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2021-01-27
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)PGI-8-20190808
|k PGI-8
|l Quantum Control
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-8-20190808
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21