Journal Article FZJ-2022-01871

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Demonstration of Quantum Brachistochrones between Distant States of an Atom

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2021
APS College Park, Md.

Physical review / X 11(1), 011035 () [10.1103/PhysRevX.11.011035]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Transforming an initial quantum state into a target state through the fastest possible route—a quantum brachistochrone—is a fundamental challenge for many technologies based on quantum mechanics. In two-level systems, the quantum brachistochrone solutions are long known. These solutions, however, are not applicable to larger systems, especially when the target state cannot be reached through a local transformation. Here, we demonstrate fast coherent transport of an atomic wave packet over a distance of 15 times its size—a paradigmatic case of quantum processes going beyond the two-level system. Our measurements of the transport fidelity reveal the existence of a minimum duration—a quantum speed limit—for the coherent splitting and recombination of matter waves. We obtain physical insight into this limit by relying on a geometric interpretation of quantum state dynamics. These results shed light on a fundamental limit of quantum state dynamics and are expected to find relevant applications in quantum sensing and quantum computing.

Classification:

Contributing Institute(s):
  1. Quantum Control (PGI-8)
Research Program(s):
  1. 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522) (POF4-522)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF >= 10 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > PGI > PGI-8
Workflow collections > Public records
Publications database
Open Access

 Record created 2022-04-07, last modified 2023-01-23


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)