001     907276
005     20250129092452.0
024 7 _ |a 10.1088/1361-6501/ac632b
|2 doi
024 7 _ |a 0022-3735
|2 ISSN
024 7 _ |a 0368-4253
|2 ISSN
024 7 _ |a 0368-4261
|2 ISSN
024 7 _ |a 0950-1290
|2 ISSN
024 7 _ |a 0950-7671
|2 ISSN
024 7 _ |a 0957-0233
|2 ISSN
024 7 _ |a 1361-6501
|2 ISSN
024 7 _ |a 1747-387X
|2 ISSN
024 7 _ |a 2051-5677
|2 ISSN
024 7 _ |a 2051-5685
|2 ISSN
024 7 _ |a 2128/31386
|2 Handle
024 7 _ |a altmetric:127048545
|2 altmetric
024 7 _ |a WOS:000782651700001
|2 WOS
037 _ _ |a FZJ-2022-01938
082 _ _ |a 620
100 1 _ |a Steinbeck, Leon
|0 P:(DE-Juel1)164526
|b 0
|e Corresponding author
245 _ _ |a In situ time-zero correction for a ground penetrating radar monitoring system with 3000 antennas
260 _ _ |a Bristol
|c 2022
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1721023650_14182
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The time-zero correction is an essential step in the data pre-processing of ground penetrating radar (GPR) measurements to obtain an accurate signal propagation time between transmitting and receiving antennas. For a novel custom GPR monitoring system with about 3000 antennas and corresponding transceiver structures placed around a soil sample (lysimeter), an in situ approach for the time-zero correction is required. In particular, unknown material properties between any pair of transmitting and receiving antennas prevent a conventional time-zero correction. We present and compare two calibration approaches, namely a pairwise and a mesh calibration, both utilizing the ability of the monitoring system to conduct reciprocal measurements between any pair of antennas. The pairwise calibration enables an individual calibration for any antenna pair, whereas the mesh calibration reduces the influence of the soil between antenna pairs compared to the pairwise calibration. The developed approach is verified by utilizing a mathematical model. Experimental results from a simplified setup show that the lysimeter filling has a negligible impact onto the calibration approach based on adjacent measurements for the mesh calibration. In addition, it is shown that a state of the art time-zero calibration can be used to measure the signal delays within the analog circuit of the measurement system with an accuracy of ±4 ps. The simulation results indicate that by using the developed concept, no prior air calibration between every possible antenna combination is necessary. Thus, this work provides a crucial contribution towards an automated in situ time-zero correction for 3D GPR monitoring systems with many antennas.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Mester, Achim
|0 P:(DE-Juel1)140421
|b 1
700 1 _ |a Zimmermann, Egon
|0 P:(DE-Juel1)133962
|b 2
700 1 _ |a Klotzsche, Anja
|0 P:(DE-Juel1)129483
|b 3
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 4
773 _ _ |a 10.1088/1361-6501/ac632b
|g Vol. 33, no. 7, p. 075904 -
|0 PERI:(DE-600)1362523-8
|n 7
|p 075904 -
|t Measurement science and technology
|v 33
|y 2022
|x 0022-3735
856 4 _ |u https://juser.fz-juelich.de/record/907276/files/Steinbeck_2022_Meas._Sci._Technol._33_075904.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:907276
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164526
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)140421
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)133962
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129483
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2022-11-19
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-19
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 1
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21