000907277 001__ 907277
000907277 005__ 20230123110614.0
000907277 0247_ $$2doi$$a10.1088/1361-6668/ac636d
000907277 0247_ $$2ISSN$$a0953-2048
000907277 0247_ $$2ISSN$$a1361-6668
000907277 0247_ $$2Handle$$a2128/31183
000907277 0247_ $$2altmetric$$aaltmetric:114638267
000907277 0247_ $$2WOS$$aWOS:000790546300001
000907277 037__ $$aFZJ-2022-01939
000907277 082__ $$a530
000907277 1001_ $$0P:(DE-Juel1)151130$$aCatelani, Gianluigi$$b0$$eCorresponding author
000907277 245__ $$aAc losses in field-cooled type I superconducting cavities
000907277 260__ $$aBristol$$bIOP Publ.$$c2022
000907277 3367_ $$2DRIVER$$aarticle
000907277 3367_ $$2DataCite$$aOutput Types/Journal article
000907277 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1652689986_21556
000907277 3367_ $$2BibTeX$$aARTICLE
000907277 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907277 3367_ $$00$$2EndNote$$aJournal Article
000907277 520__ $$aAs superconductors are cooled below their critical temperature, stray magnetic flux can become trapped in regions that remain normal. The presence of trapped flux facilitates dissipation of ac current in a superconductor, leading to losses in superconducting elements of microwave devices. In type II superconductors, dissipation is well-understood in terms of the dynamics of vortices hosting a single flux quantum. In contrast, the ac response of type I superconductors with trapped flux has not received much attention. Building on Andreev's early work (Andreev 1967 Sov. Phys. JETP 24 1019), here we show theoretically that the dominant dissipation mechanism is the absorption of the ac field at the exposed surfaces of the normal regions, while the deformation of the superconducting/normal interfaces is unimportant. We use the developed theory to estimate the degradation of the quality factors in field-cooled cavities, and we satisfactorily compare these theoretical estimates to the measured field dependence of the quality factors of two aluminum cavities. We also identify a regime in which the dissipated power depends weakly on the Ginzburg-Landau parameter; this makes it possible to apply our findings to cavities made of other materials, such as niobium.
000907277 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000907277 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907277 7001_ $$0P:(DE-HGF)0$$aLi, Kaicheng$$b1
000907277 7001_ $$0P:(DE-HGF)0$$aAxline, Christopher James$$b2
000907277 7001_ $$0P:(DE-HGF)0$$aBrecht, Teresa$$b3
000907277 7001_ $$00000-0002-0272-5481$$aFrunzio, Luigi$$b4
000907277 7001_ $$0P:(DE-HGF)0$$aSchoelkopf, Robert$$b5
000907277 7001_ $$0P:(DE-HGF)0$$aGlazman, Leonid$$b6
000907277 773__ $$0PERI:(DE-600)1361475-7$$a10.1088/1361-6668/ac636d$$n6$$p065016$$tSuperconductor science and technology$$v35$$x0953-2048$$y2022
000907277 8564_ $$uhttps://juser.fz-juelich.de/record/907277/files/Catelani_2022_Supercond._Sci._Technol._35_065016.pdf$$yOpenAccess
000907277 8767_ $$d2022-04-19$$eHybrid-OA$$jPublish and Read
000907277 909CO $$ooai:juser.fz-juelich.de:907277$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
000907277 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151130$$aForschungszentrum Jülich$$b0$$kFZJ
000907277 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000907277 9141_ $$y2022
000907277 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000907277 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907277 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000907277 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907277 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-11$$wger
000907277 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSUPERCOND SCI TECH : 2021$$d2022-11-11
000907277 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000907277 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000907277 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-11
000907277 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-11
000907277 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000907277 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000907277 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000907277 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000907277 920__ $$lyes
000907277 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
000907277 980__ $$ajournal
000907277 980__ $$aVDB
000907277 980__ $$aUNRESTRICTED
000907277 980__ $$aI:(DE-Juel1)PGI-11-20170113
000907277 980__ $$aAPC
000907277 9801_ $$aAPC
000907277 9801_ $$aFullTexts