000907277 001__ 907277 000907277 005__ 20230123110614.0 000907277 0247_ $$2doi$$a10.1088/1361-6668/ac636d 000907277 0247_ $$2ISSN$$a0953-2048 000907277 0247_ $$2ISSN$$a1361-6668 000907277 0247_ $$2Handle$$a2128/31183 000907277 0247_ $$2altmetric$$aaltmetric:114638267 000907277 0247_ $$2WOS$$aWOS:000790546300001 000907277 037__ $$aFZJ-2022-01939 000907277 082__ $$a530 000907277 1001_ $$0P:(DE-Juel1)151130$$aCatelani, Gianluigi$$b0$$eCorresponding author 000907277 245__ $$aAc losses in field-cooled type I superconducting cavities 000907277 260__ $$aBristol$$bIOP Publ.$$c2022 000907277 3367_ $$2DRIVER$$aarticle 000907277 3367_ $$2DataCite$$aOutput Types/Journal article 000907277 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1652689986_21556 000907277 3367_ $$2BibTeX$$aARTICLE 000907277 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000907277 3367_ $$00$$2EndNote$$aJournal Article 000907277 520__ $$aAs superconductors are cooled below their critical temperature, stray magnetic flux can become trapped in regions that remain normal. The presence of trapped flux facilitates dissipation of ac current in a superconductor, leading to losses in superconducting elements of microwave devices. In type II superconductors, dissipation is well-understood in terms of the dynamics of vortices hosting a single flux quantum. In contrast, the ac response of type I superconductors with trapped flux has not received much attention. Building on Andreev's early work (Andreev 1967 Sov. Phys. JETP 24 1019), here we show theoretically that the dominant dissipation mechanism is the absorption of the ac field at the exposed surfaces of the normal regions, while the deformation of the superconducting/normal interfaces is unimportant. We use the developed theory to estimate the degradation of the quality factors in field-cooled cavities, and we satisfactorily compare these theoretical estimates to the measured field dependence of the quality factors of two aluminum cavities. We also identify a regime in which the dissipated power depends weakly on the Ginzburg-Landau parameter; this makes it possible to apply our findings to cavities made of other materials, such as niobium. 000907277 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x0 000907277 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000907277 7001_ $$0P:(DE-HGF)0$$aLi, Kaicheng$$b1 000907277 7001_ $$0P:(DE-HGF)0$$aAxline, Christopher James$$b2 000907277 7001_ $$0P:(DE-HGF)0$$aBrecht, Teresa$$b3 000907277 7001_ $$00000-0002-0272-5481$$aFrunzio, Luigi$$b4 000907277 7001_ $$0P:(DE-HGF)0$$aSchoelkopf, Robert$$b5 000907277 7001_ $$0P:(DE-HGF)0$$aGlazman, Leonid$$b6 000907277 773__ $$0PERI:(DE-600)1361475-7$$a10.1088/1361-6668/ac636d$$n6$$p065016$$tSuperconductor science and technology$$v35$$x0953-2048$$y2022 000907277 8564_ $$uhttps://juser.fz-juelich.de/record/907277/files/Catelani_2022_Supercond._Sci._Technol._35_065016.pdf$$yOpenAccess 000907277 8767_ $$d2022-04-19$$eHybrid-OA$$jPublish and Read 000907277 909CO $$ooai:juser.fz-juelich.de:907277$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire 000907277 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151130$$aForschungszentrum Jülich$$b0$$kFZJ 000907277 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0 000907277 9141_ $$y2022 000907277 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02 000907277 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000907277 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02 000907277 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000907277 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-11$$wger 000907277 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSUPERCOND SCI TECH : 2021$$d2022-11-11 000907277 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11 000907277 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11 000907277 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-11 000907277 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-11 000907277 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11 000907277 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11 000907277 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11 000907277 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11 000907277 920__ $$lyes 000907277 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0 000907277 980__ $$ajournal 000907277 980__ $$aVDB 000907277 980__ $$aUNRESTRICTED 000907277 980__ $$aI:(DE-Juel1)PGI-11-20170113 000907277 980__ $$aAPC 000907277 9801_ $$aAPC 000907277 9801_ $$aFullTexts