000907419 001__ 907419
000907419 005__ 20240712113103.0
000907419 0247_ $$2doi$$a10.1002/batt.202200075
000907419 0247_ $$2Handle$$a2128/31569
000907419 0247_ $$2altmetric$$aaltmetric:126409173
000907419 0247_ $$2WOS$$aWOS:000787102500001
000907419 037__ $$aFZJ-2022-02027
000907419 082__ $$a620
000907419 1001_ $$0P:(DE-Juel1)187473$$aWichmann, Lennart$$b0$$ufzj
000907419 245__ $$aImproved Capacity Retention for a Disordered Rocksalt Cathode via Solvate Ionic Liquid Electrolytes
000907419 260__ $$aWeinheim$$bWiley-VCH$$c2022
000907419 3367_ $$2DRIVER$$aarticle
000907419 3367_ $$2DataCite$$aOutput Types/Journal article
000907419 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1658906549_11504
000907419 3367_ $$2BibTeX$$aARTICLE
000907419 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907419 3367_ $$00$$2EndNote$$aJournal Article
000907419 520__ $$aLithium-rich disordered rocksalts (DRX) are a promising class of cathode materials for high-energy lithium ion batteries (LIBs) and lithium metal batteries (LMBs) due to the high initial specific capacities (>200 mAh g−1) as well as flexible chemical composition. However, challenges concerning severe capacity fade and voltage decay upon cycling at high cut-off voltages are still to be overcome. Moreover, state-of-the-art carbonate-based electrolytes can be decomposed by reactive oxygen species released by DRX materials during cycling. In this work, the electrochemical performance of Li1.25Fe0.5Nb0.25O2 (LFNO) || Li LMB and LFNO || graphite LIB cells is compared for a conventional, carbonate-based electrolyte and the solvate ionic liquid (SIL) [Li(G3)][TFSI] (G3: triethyleneglycoldimethylether). Cycle life is notably improved by the chemically more stable ionic liquid electrolyte, as the anionic redox activity of LFNO is prolonged compared to the carbonate-based cells. This work represents an important step toward an improved cycle life of DRX cathodes.
000907419 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000907419 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907419 7001_ $$0P:(DE-Juel1)176761$$aBrinkmann, Jan-Paul$$b1$$ufzj
000907419 7001_ $$0P:(DE-HGF)0$$aLuo, Mingzeng$$b2
000907419 7001_ $$00000-0002-9928-7165$$aYang, Yong$$b3
000907419 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4
000907419 7001_ $$00000-0002-5670-0327$$aSchmuch, Richard$$b5
000907419 7001_ $$00000-0002-2097-5193$$aPlacke, Tobias$$b6$$eCorresponding author
000907419 7001_ $$00000-0001-7053-3986$$aGomez-Martin, Aurora$$b7$$eCorresponding author
000907419 773__ $$0PERI:(DE-600)2897248-X$$a10.1002/batt.202200075$$n7$$pe202200075$$tBatteries & supercaps$$v5$$x2566-6223$$y2022
000907419 8564_ $$uhttps://juser.fz-juelich.de/record/907419/files/Batteries%20Supercaps%20-%202022%20-%20Wichmann%20-%20Improved%20Capacity%20Retention%20for%20a%20Disordered%20Rocksalt%20Cathode%20via%20Solvate%20Ionic.pdf$$yOpenAccess
000907419 8564_ $$uhttps://juser.fz-juelich.de/record/907419/files/GetFileAttachment_Improved.pdf$$yOpenAccess
000907419 909CO $$ooai:juser.fz-juelich.de:907419$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907419 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187473$$aForschungszentrum Jülich$$b0$$kFZJ
000907419 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176761$$aForschungszentrum Jülich$$b1$$kFZJ
000907419 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ
000907419 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000907419 9141_ $$y2022
000907419 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907419 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-32$$wger
000907419 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32
000907419 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907419 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32
000907419 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-23
000907419 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-23
000907419 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-23
000907419 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-23
000907419 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-23
000907419 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000907419 9801_ $$aFullTexts
000907419 980__ $$ajournal
000907419 980__ $$aVDB
000907419 980__ $$aUNRESTRICTED
000907419 980__ $$aI:(DE-Juel1)IEK-12-20141217
000907419 981__ $$aI:(DE-Juel1)IMD-4-20141217