000907508 001__ 907508
000907508 005__ 20240129202805.0
000907508 0247_ $$2doi$$a10.1093/brain/awac157
000907508 0247_ $$2ISSN$$a0006-8950
000907508 0247_ $$2ISSN$$a1460-2156
000907508 0247_ $$2Handle$$a2128/34152
000907508 0247_ $$2pmid$$a35485480
000907508 0247_ $$2WOS$$aWOS:000894006500001
000907508 037__ $$aFZJ-2022-02063
000907508 041__ $$aEnglish
000907508 082__ $$a610
000907508 1001_ $$0P:(DE-HGF)0$$aHensel, Lukas$$b0
000907508 245__ $$aRecovered grasping performance after stroke depends on interhemispheric frontoparietal connectivity
000907508 260__ $$aOxford$$bOxford Univ. Press$$c2023
000907508 3367_ $$2DRIVER$$aarticle
000907508 3367_ $$2DataCite$$aOutput Types/Journal article
000907508 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1706531419_27505
000907508 3367_ $$2BibTeX$$aARTICLE
000907508 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907508 3367_ $$00$$2EndNote$$aJournal Article
000907508 520__ $$aActivity changes in the ipsi- and contralesional parietal cortex and abnormal interhemispheric connectivity between these regions are commonly observed after stroke, however, their significance for motor recovery remains poorly understood. We here assessed the contribution of ipsilesional and contralesional anterior intraparietal cortex (aIPS) for hand motor function in eighteen recovered chronic stroke patients and eighteen healthy controls using a multimodal assessment consisting of resting-state fMRI, motor task fMRI, online-rTMS interference, and 3-D movement kinematics. Effects were compared against two control stimulation sites, i.e., contralesional M1 and a sham stimulation condition. We found that patients with good motor outcome compared to patients with more substantial residual deficits featured increased resting-state connectivity between ipsilesional aIPS and contralesional aIPS as well as between ipsilesional aIPS and dorsal premotor cortex. Moreover, interhemispheric connectivity between ipsilesional M1 and contralesional M1 as well as ipsilesional aIPS and contralesional M1 correlated with better motor performance across tasks. TMS interference at individual aIPS and M1 coordinates led to differential effects depending on the motor task that was tested, i.e., index finger-tapping, rapid pointing movements, or a reach-grasp-lift task. Interfering with contralesional aIPS deteriorated the accuracy of grasping, especially in patients featuring higher connectivity between ipsi- and contralesional aIPS. In contrast, interference with the contralesional M1 led to impaired grasping speed in patients featuring higher connectivity between bilateral M1. These findings suggest differential roles of contralesional M1 and aIPS for distinct aspects of recovered hand motor function, depending on the reorganization of interhemispheric connectivity.
000907508 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000907508 536__ $$0G:(GEPRIS)431549029$$aDFG project 431549029 - SFB 1451: Schlüsselmechanismen normaler und krankheitsbedingt gestörter motorischer Kontrolle (431549029)$$c431549029$$x1
000907508 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907508 7001_ $$0P:(DE-HGF)0$$aLange, Fabian$$b1
000907508 7001_ $$0P:(DE-HGF)0$$aTscherpel, Caroline$$b2
000907508 7001_ $$0P:(DE-Juel1)162395$$aViswanathan, Shivakumar$$b3
000907508 7001_ $$0P:(DE-HGF)0$$aFreytag, Jana$$b4
000907508 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b5
000907508 7001_ $$0P:(DE-HGF)0$$aVolz, Lukas J.$$b6
000907508 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon Rudolf$$b7
000907508 7001_ $$0P:(DE-Juel1)161406$$aGrefkes, Christian$$b8$$eCorresponding author
000907508 773__ $$0PERI:(DE-600)1474117-9$$a10.1093/brain/awac157$$gp. awac157$$n3$$p1006-1020$$tBrain$$v146$$x0006-8950$$y2023
000907508 8564_ $$uhttps://juser.fz-juelich.de/record/907508/files/awac157-1.pdf$$yOpenAccess
000907508 909CO $$ooai:juser.fz-juelich.de:907508$$popenaire$$pVDB$$popen_access$$pdnbdelivery$$pdriver
000907508 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne , Cologne, Germany$$b0
000907508 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne , Cologne, Germany$$b1
000907508 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne , Cologne, Germany$$b2
000907508 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162395$$aForschungszentrum Jülich$$b3$$kFZJ
000907508 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne , Cologne, Germany$$b4
000907508 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b5$$kFZJ
000907508 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$aHHU Düsseldorf $$b5
000907508 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne , Cologne, Germany$$b6
000907508 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b7$$kFZJ
000907508 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131720$$a Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne , Cologne, Germany$$b7
000907508 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161406$$aForschungszentrum Jülich$$b8$$kFZJ
000907508 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)161406$$a Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne , Cologne, Germany$$b8
000907508 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000907508 9141_ $$y2023
000907508 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000907508 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-29
000907508 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907508 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000907508 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000907508 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
000907508 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000907508 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000907508 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-21
000907508 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000907508 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
000907508 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000907508 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
000907508 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-21
000907508 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRAIN : 2022$$d2023-10-21
000907508 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
000907508 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
000907508 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bBRAIN : 2022$$d2023-10-21
000907508 920__ $$lyes
000907508 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000907508 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x1
000907508 980__ $$ajournal
000907508 980__ $$aVDB
000907508 980__ $$aI:(DE-Juel1)INM-7-20090406
000907508 980__ $$aI:(DE-Juel1)INM-3-20090406
000907508 980__ $$aUNRESTRICTED
000907508 9801_ $$aFullTexts