001     9077
005     20210129210455.0
024 7 _ |2 pmid
|a pmid:20117896
024 7 _ |2 DOI
|a 10.1016/j.mri.2009.11.006
024 7 _ |2 WOS
|a WOS:000276042400004
037 _ _ |a PreJuSER-9077
041 _ _ |a eng
082 _ _ |a 610
084 _ _ |2 WoS
|a Radiology, Nuclear Medicine & Medical Imaging
100 1 _ |0 P:(DE-Juel1)VDB65642
|a Oros-Peusquens, A.M.
|b 0
|u FZJ
245 _ _ |a In vivo imaging of the human brain at 1.5 T with 0,6-mm isotropic resolution
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2010
300 _ _ |a 329 - 340
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 4146
|a Magnetic Resonance Imaging
|v 28
|x 0730-725X
500 _ _ |a We are grateful to the volunteers for their collaboration. The MRI facility is supported by the Bundesministerium far Bildung und Forschung (BMBF) through a grant (BMBF 01GO0104) to N.J.S. and K.Z. This Human Brain Project/Neuroinformatics research is funded by the National Institute of Biomedical Imaging and Bioengineering, the National Institute of Neurological Disorders and Stroke and the National Institute of Mental Health. The support of the BMBF (Brain Imaging Centre West BMBF, 01GO0204) is kindly acknowledged.
520 _ _ |a We present high-resolution in vivo anatomical scans with 3D whole-brain coverage and an isotropic resolution of 0.6 mm, obtained at a clinical field of 1.5 T. The data are acquired in 10 independent scans over two sessions using a 3D magnetization-prepared, gradient echo sequence, modified to output phase images in addition to magnitude images. The independent scans are coregistered to correct for head motion, prior to performing complex averaging. The resolution of the final, averaged image, is found to be equal to the nominal one. The separation between the distribution of gray-scale values characterizing the gray and white matter, respectively, is substantially improved over single-scan images. Complex and magnitude averaging are compared and found to deliver similar results for regions with a high initial signal-to-noise ratio (SNR) within the brain. However, complex averaging is strongly recommended for quantitative applications or for studies where regions of low initial SNR are important. To summarize, a method for high-resolution in vivo anatomical imaging at a clinical field strength is demonstrated and is recommended for brain mapping. The method can also be applied at higher fields with a reduced acquisition time.
536 _ _ |0 G:(DE-Juel1)FUEK409
|2 G:(DE-HGF)
|x 0
|c FUEK409
|a Funktion und Dysfunktion des Nervensystems (FUEK409)
536 _ _ |0 G:(DE-HGF)POF2-89573
|a 89573 - Neuroimaging (POF2-89573)
|c POF2-89573
|f POF II T
|x 1
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Adult
650 _ 2 |2 MeSH
|a Algorithms
650 _ 2 |2 MeSH
|a Anisotropy
650 _ 2 |2 MeSH
|a Female
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Image Enhancement: methods
650 _ 2 |2 MeSH
|a Image Interpretation, Computer-Assisted: methods
650 _ 2 |2 MeSH
|a Imaging, Three-Dimensional: methods
650 _ 2 |2 MeSH
|a Magnetic Resonance Imaging: methods
650 _ 2 |2 MeSH
|a Male
650 _ 2 |2 MeSH
|a Reproducibility of Results
650 _ 2 |2 MeSH
|a Sensitivity and Specificity
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a High-resolution MRI
653 2 0 |2 Author
|a 1.5 T
653 2 0 |2 Author
|a Coregistration
653 2 0 |2 Author
|a Averaging
653 2 0 |2 Author
|a Complex averaging
653 2 0 |2 Author
|a In vivo anatomical imaging
653 2 0 |2 Author
|a Brain imaging
653 2 0 |2 Author
|a Volume coverage
653 2 0 |2 Author
|a 0.6-mm isotropic resolution
700 1 _ |0 P:(DE-Juel1)VDB30236
|a Stoecker, T.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)131631
|a Amunts, K.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)131714
|a Zilles, K.
|b 3
|u FZJ
700 1 _ |0 P:(DE-Juel1)131794
|a Shah, J. N.
|b 4
|u FZJ
773 _ _ |0 PERI:(DE-600)1500646-3
|a 10.1016/j.mri.2009.11.006
|g Vol. 28, p. 329 - 340
|p 329 - 340
|q 28<329 - 340
|t Magnetic resonance imaging
|v 28
|x 0730-725X
|y 2010
856 7 _ |u http://dx.doi.org/10.1016/j.mri.2009.11.006
909 C O |o oai:juser.fz-juelich.de:9077
|p VDB
913 2 _ |0 G:(DE-HGF)POF3-573
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Neuroimaging
|x 0
913 1 _ |0 G:(DE-HGF)POF2-89573
|a DE-HGF
|v Neuroimaging
|x 1
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|g INM
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|g INM
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 1
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|g INM
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 2
970 _ _ |a VDB:(DE-Juel1)118480
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INM-1-20090406
981 _ _ |a I:(DE-Juel1)INM-4-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21