001     907774
005     20240712113054.0
024 7 _ |a 10.1002/celc.202200469
|2 doi
024 7 _ |a altmetric:129018477
|2 altmetric
024 7 _ |a WOS:000802894700001
|2 WOS
024 7 _ |a 2128/34007
|2 Handle
037 _ _ |a FZJ-2022-02203
082 _ _ |a 540
100 1 _ |a Klein, Sven
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Suppressing Electrode Crosstalk and Prolonging Cycle Life in High‐Voltage Li Ion Batteries: Pivotal Role of Fluorophosphates in Electrolytes
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1677503585_17974
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a High-voltage Li ion batteries are compromised by lower cycle life due to enhanced degradation of cathode material, e.g. NCM523. Crucial part is the initiated electrode crosstalk, i.e. transition metal (TM) dissolution from the cathode and subsequent deposition on the anode, as it forces formation of high surface area lithium, capacity losses and risk of Li dendrite penetration, finally leading to an abrupt end-of-life (= rollover failure). Hence, suppression of this failure cascade is the pivotal strategy to prolong cycle life. A pragmatic approach is the electrolyte manipulation towards formation/presence of fluorophosphates, as they effectively suppress electrode crosstalk via TM scavenging. Either, they can be intrinsically formed, e.g. via elimination of ethylene carbonate (EC) solvent (= EC-free electrolyte), or simply externally added, e.g. via (good-soluble) lithium difluorophosphate electrolyte additive. Their effectiveness is demonstrated for conventional EC-based and EC-free electrolytes at limiting conditions (4.5 and 4.6 V, respectively). In parallel to supportive approach combinations ( e.g. coating), also destructive combinations are highlighted, i.e. approaches, which even decrease the fluorophosphate content, e.g. vinylene carbonate additive in EC-free electrolytes. Finally, by demonstrating the value of (concentration-optimized) fluorophosphates, appropriate benchmark electrolyte formulations for high-voltage LIBs are discussed.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Haneke, Lukas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Harte, Patrick
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Stolz, Lukas
|0 P:(DE-Juel1)181055
|b 3
|u fzj
700 1 _ |a van Wickeren, Stefan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Borzutzki, Kristina
|0 P:(DE-Juel1)171270
|b 5
|u fzj
700 1 _ |a Nowak, Sascha
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 7
|u fzj
700 1 _ |a Placke, Tobias
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
700 1 _ |a Kasnatscheew, Johannes
|0 P:(DE-Juel1)171865
|b 9
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/celc.202200469
|g p. celc.202200469
|0 PERI:(DE-600)2724978-5
|n 13
|p e202200469
|t ChemElectroChem
|v 9
|y 2022
|x 2196-0216
856 4 _ |u https://juser.fz-juelich.de/record/907774/files/Invoice_5707218.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/907774/files/ChemElectroChem%20-%202022%20-%20Klein%20-%20Suppressing%20Electrode%20Crosstalk%20and%20Prolonging%20Cycle%20Life%20in%20High%E2%80%90Voltage%20Li%20Ion%20Batteries.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/907774/files/Suppressing_PDF.js%20viewer.pdf
909 C O |o oai:juser.fz-juelich.de:907774
|p openaire
|p open_access
|p OpenAPC
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)181055
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)171270
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)171865
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2022
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DEAL: Wiley 2019
|0 PC:(DE-HGF)0120
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-17
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEMELECTROCHEM : 2021
|d 2022-11-17
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-17
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-17
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-17
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21