000908066 001__ 908066 000908066 005__ 20230815122842.0 000908066 0247_ $$2doi$$a10.1103/PhysRevMaterials.6.064002 000908066 0247_ $$2ISSN$$a2475-9953 000908066 0247_ $$2ISSN$$a2476-0455 000908066 0247_ $$2Handle$$a2128/31280 000908066 0247_ $$2WOS$$aWOS:000809873200002 000908066 037__ $$aFZJ-2022-02353 000908066 082__ $$a530 000908066 1001_ $$0P:(DE-Juel1)173990$$aLin, You-Ron$$b0 000908066 245__ $$aBoron nitride on SiC(0001) 000908066 260__ $$aCollege Park, MD$$bAPS$$c2022 000908066 3367_ $$2DRIVER$$aarticle 000908066 3367_ $$2DataCite$$aOutput Types/Journal article 000908066 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1654860432_16659 000908066 3367_ $$2BibTeX$$aARTICLE 000908066 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000908066 3367_ $$00$$2EndNote$$aJournal Article 000908066 520__ $$aIn the field of van der Waals heterostructures, the twist angle between stacked two-dimensional layers has been identified to be of utmost importance for the properties of the heterostructures. In this context, we previously reported the growth of a single layer of unconventionally oriented epitaxial graphene that forms in a surfactant atmosphere [F. C. Bocquet et al., Phys. Rev. Lett. 125, 106102 (2020)]. The resulting G-R0∘ layer is aligned with the SiC lattice, and hence represents an important milestone towards high-quality twisted bilayer graphene, a frequently investigated model system in this field. Here, we focus on the surface structures obtained in the same surfactant atmosphere, but at lower preparation temperatures at which a boron nitride template layer forms on SiC(0001). In a comprehensive study based on complementary experimental and theoretical techniques, we find—in contrast to the literature—that this template layer is a hexagonal BxNy layer, but not high-quality hBN. It is aligned with the SiC lattice and gradually replaced by low-quality graphene in the 0∘ orientation of the BxNy template layer upon annealing. 000908066 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0 000908066 536__ $$0G:(GEPRIS)396769409$$aDFG project 396769409 - Grundlagen der Photoemissionstomographie $$c396769409$$x1 000908066 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000908066 7001_ $$0P:(DE-Juel1)161374$$aFranke, Markus$$b1 000908066 7001_ $$00000-0001-7976-1344$$aParhizkar, Shayan$$b2 000908066 7001_ $$0P:(DE-Juel1)172607$$aRaths, Miriam$$b3 000908066 7001_ $$0P:(DE-HGF)0$$aWen-zhe Yu, Victor$$b4 000908066 7001_ $$0P:(DE-HGF)0$$aLee, Tien-Lin$$b5 000908066 7001_ $$aSoubatch, Serguei$$b6 000908066 7001_ $$00000-0001-8660-7230$$aBlum, Volker$$b7 000908066 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b8 000908066 7001_ $$0P:(DE-Juel1)128774$$aKumpf, Christian$$b9 000908066 7001_ $$0P:(DE-Juel1)167128$$aBocquet, François C.$$b10$$eCorresponding author 000908066 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.6.064002$$gVol. 6, no. 6, p. 064002$$n6$$p064002$$tPhysical review materials$$v6$$x2475-9953$$y2022 000908066 8564_ $$uhttps://juser.fz-juelich.de/record/908066/files/PhysRevMaterials.6.064002.pdf$$yOpenAccess 000908066 909CO $$ooai:juser.fz-juelich.de:908066$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000908066 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172607$$aForschungszentrum Jülich$$b3$$kFZJ 000908066 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b8$$kFZJ 000908066 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich$$b9$$kFZJ 000908066 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167128$$aForschungszentrum Jülich$$b10$$kFZJ 000908066 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0 000908066 9141_ $$y2022 000908066 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement 000908066 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27 000908066 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000908066 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27 000908066 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV MATER : 2021$$d2022-11-25 000908066 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25 000908066 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25 000908066 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25 000908066 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25 000908066 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-25 000908066 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-25 000908066 920__ $$lyes 000908066 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0 000908066 980__ $$ajournal 000908066 980__ $$aVDB 000908066 980__ $$aUNRESTRICTED 000908066 980__ $$aI:(DE-Juel1)PGI-3-20110106 000908066 9801_ $$aFullTexts