000908746 001__ 908746
000908746 005__ 20240313103127.0
000908746 0247_ $$2doi$$a10.1523/ENEURO.0505-21.2022
000908746 0247_ $$2Handle$$a2128/31685
000908746 0247_ $$2pmid$$a35584914
000908746 0247_ $$2WOS$$aWOS:000817093700001
000908746 037__ $$aFZJ-2022-02804
000908746 082__ $$a610
000908746 1001_ $$0P:(DE-Juel1)171932$$aStella, Alessandra$$b0$$eCorresponding author
000908746 245__ $$aComparing Surrogates to Evaluate Precisely Timed Higher-Order Spike Correlations
000908746 260__ $$aWashington, DC$$bSoc.$$c2022
000908746 3367_ $$2DRIVER$$aarticle
000908746 3367_ $$2DataCite$$aOutput Types/Journal article
000908746 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671712561_17992
000908746 3367_ $$2BibTeX$$aARTICLE
000908746 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908746 3367_ $$00$$2EndNote$$aJournal Article
000908746 520__ $$aThe generation of surrogate data, i.e., the modification of data to destroy a certain feature, can be considered as the implementation of a null-hypothesis whenever an analytical approach is not feasible. Thus, surrogate data generation has been extensively used to assess the significance of spike correlations in parallel spike trains. In this context, one of the main challenges is to properly construct the desired null-hypothesis distribution and to avoid altering the single spike train statistics. A classical surrogate technique is uniform dithering (UD), which displaces spikes locally and uniformly distributed, to destroy temporal properties on a fine timescale while keeping them on a coarser one. Here, we compare UD against five similar surrogate techniques in the context of the detection of significant spatiotemporal spike patterns. We evaluate the surrogates for their performance, first on spike trains based on point process models with constant firing rate, and second on modeled nonstationary artificial data to assess the potential detection of false positive (FP) patterns in a more complex and realistic setting. We determine which statistical features of the spike trains are modified and to which extent. Moreover, we find that UD fails as an appropriate surrogate because it leads to a loss of spikes in the context of binning and clipping, and thus to a large number of FP patterns. The other surrogates achieve a better performance in detecting precisely timed higher-order correlations. Based on these insights, we analyze experimental data from the pre-/motor cortex of macaque monkeys during a reaching-and-grasping task.
000908746 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000908746 536__ $$0G:(GEPRIS)368482240$$aGRK 2416:  MultiSenses-MultiScales: Novel approaches to decipher neural processing in multisensory integration (368482240)$$c368482240$$x1
000908746 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x2
000908746 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x3
000908746 536__ $$0G:(DE-HGF)ZT-I-0003$$aHAF - Helmholtz Analytics Framework (ZT-I-0003)$$cZT-I-0003$$x4
000908746 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x5
000908746 536__ $$0G:(GEPRIS)491111487$$aOpen-Access-Publikationskosten Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x6
000908746 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908746 7001_ $$0P:(DE-Juel1)178725$$aBouss, Peter$$b1$$ufzj
000908746 7001_ $$0P:(DE-Juel1)172768$$aPalm, Günther$$b2$$ufzj
000908746 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b3$$ufzj
000908746 773__ $$0PERI:(DE-600)2800598-3$$a10.1523/ENEURO.0505-21.2022$$gVol. 9, no. 3, p. ENEURO.0505-21.2022 -$$n3$$pENEURO.0505-21.2022 -$$teNeuro$$v9$$x2373-2822$$y2022
000908746 8564_ $$uhttps://juser.fz-juelich.de/record/908746/files/Invoice_eNeuro02264.pdf
000908746 8564_ $$uhttps://juser.fz-juelich.de/record/908746/files/ENEURO.0505-21.2022.full.pdf$$yOpenAccess
000908746 8767_ $$8eNeuro02264$$92022-04-19$$a1200180643$$d2022-05-04$$eAPC$$jZahlung erfolgt$$zFZJ-2022-02009 ; USD 2250,-
000908746 909CO $$ooai:juser.fz-juelich.de:908746$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000908746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171932$$aForschungszentrum Jülich$$b0$$kFZJ
000908746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178725$$aForschungszentrum Jülich$$b1$$kFZJ
000908746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172768$$aForschungszentrum Jülich$$b2$$kFZJ
000908746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b3$$kFZJ
000908746 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000908746 9141_ $$y2022
000908746 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000908746 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000908746 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2020-09-05
000908746 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-05
000908746 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05
000908746 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05
000908746 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-05
000908746 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908746 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-05
000908746 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000908746 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000908746 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2017-10-05T09:48:20Z
000908746 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2017-10-05T09:48:20Z
000908746 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Double blind peer review$$d2017-10-05T09:48:20Z
000908746 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000908746 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000908746 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-11
000908746 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-11
000908746 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000908746 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000908746 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000908746 9801_ $$aAPC
000908746 9801_ $$aFullTexts
000908746 980__ $$ajournal
000908746 980__ $$aVDB
000908746 980__ $$aI:(DE-Juel1)INM-6-20090406
000908746 980__ $$aI:(DE-Juel1)IAS-6-20130828
000908746 980__ $$aI:(DE-Juel1)INM-10-20170113
000908746 980__ $$aAPC
000908746 980__ $$aUNRESTRICTED
000908746 981__ $$aI:(DE-Juel1)IAS-6-20130828