001     908746
005     20240313103127.0
024 7 _ |a 10.1523/ENEURO.0505-21.2022
|2 doi
024 7 _ |a 2128/31685
|2 Handle
024 7 _ |a 35584914
|2 pmid
024 7 _ |a WOS:000817093700001
|2 WOS
037 _ _ |a FZJ-2022-02804
082 _ _ |a 610
100 1 _ |a Stella, Alessandra
|0 P:(DE-Juel1)171932
|b 0
|e Corresponding author
245 _ _ |a Comparing Surrogates to Evaluate Precisely Timed Higher-Order Spike Correlations
260 _ _ |a Washington, DC
|c 2022
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1671712561_17992
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The generation of surrogate data, i.e., the modification of data to destroy a certain feature, can be considered as the implementation of a null-hypothesis whenever an analytical approach is not feasible. Thus, surrogate data generation has been extensively used to assess the significance of spike correlations in parallel spike trains. In this context, one of the main challenges is to properly construct the desired null-hypothesis distribution and to avoid altering the single spike train statistics. A classical surrogate technique is uniform dithering (UD), which displaces spikes locally and uniformly distributed, to destroy temporal properties on a fine timescale while keeping them on a coarser one. Here, we compare UD against five similar surrogate techniques in the context of the detection of significant spatiotemporal spike patterns. We evaluate the surrogates for their performance, first on spike trains based on point process models with constant firing rate, and second on modeled nonstationary artificial data to assess the potential detection of false positive (FP) patterns in a more complex and realistic setting. We determine which statistical features of the spike trains are modified and to which extent. Moreover, we find that UD fails as an appropriate surrogate because it leads to a loss of spikes in the context of binning and clipping, and thus to a large number of FP patterns. The other surrogates achieve a better performance in detecting precisely timed higher-order correlations. Based on these insights, we analyze experimental data from the pre-/motor cortex of macaque monkeys during a reaching-and-grasping task.
536 _ _ |a 5231 - Neuroscientific Foundations (POF4-523)
|0 G:(DE-HGF)POF4-5231
|c POF4-523
|f POF IV
|x 0
536 _ _ |a GRK 2416:  MultiSenses-MultiScales: Novel approaches to decipher neural processing in multisensory integration (368482240)
|0 G:(GEPRIS)368482240
|c 368482240
|x 1
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 2
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 3
536 _ _ |a HAF - Helmholtz Analytics Framework (ZT-I-0003)
|0 G:(DE-HGF)ZT-I-0003
|c ZT-I-0003
|x 4
536 _ _ |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)
|0 G:(DE-Juel1)JL SMHB-2021-2027
|c JL SMHB-2021-2027
|x 5
536 _ _ |a Open-Access-Publikationskosten Forschungszentrum Jülich (OAPKFZJ) (491111487)
|0 G:(GEPRIS)491111487
|c 491111487
|x 6
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bouss, Peter
|0 P:(DE-Juel1)178725
|b 1
|u fzj
700 1 _ |a Palm, Günther
|0 P:(DE-Juel1)172768
|b 2
|u fzj
700 1 _ |a Grün, Sonja
|0 P:(DE-Juel1)144168
|b 3
|u fzj
773 _ _ |a 10.1523/ENEURO.0505-21.2022
|g Vol. 9, no. 3, p. ENEURO.0505-21.2022 -
|0 PERI:(DE-600)2800598-3
|n 3
|p ENEURO.0505-21.2022 -
|t eNeuro
|v 9
|y 2022
|x 2373-2822
856 4 _ |u https://juser.fz-juelich.de/record/908746/files/Invoice_eNeuro02264.pdf
856 4 _ |u https://juser.fz-juelich.de/record/908746/files/ENEURO.0505-21.2022.full.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:908746
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171932
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178725
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172768
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144168
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5231
|x 0
914 1 _ |y 2022
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-05
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-05
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2017-10-05T09:48:20Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2017-10-05T09:48:20Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Double blind peer review
|d 2017-10-05T09:48:20Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-11
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21