001     908758
005     20240712113117.0
024 7 _ |a 10.1021/acsomega.2c02940
|2 doi
024 7 _ |a 2128/32049
|2 Handle
024 7 _ |a 35967020
|2 pmid
024 7 _ |a WOS:000841959600001
|2 WOS
037 _ _ |a FZJ-2022-02814
082 _ _ |a 660
100 1 _ |a Hamzelui, Niloofar
|0 P:(DE-Juel1)171306
|b 0
245 _ _ |a Towards the integration of a silicon/graphite-anode based lithium-ion battery in photovoltaic charging battery systems
260 _ _ |a Washington, DC
|c 2022
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674540825_32481
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Solar photovoltaic (PV) energy generation is highly dependent on weather conditions and only applicable when the sun is shining during the daytime, leading to a mismatch between demand and supply. Merging PVs with battery storage is the straightforward route to counteract the intermittent nature of solar generation. Capacity (or energy density), overall efficiency, and stability at elevated temperatures are among key battery performance metrics for an integrated PV–battery system. The performance of high-capacity silicon (Si)/graphite (Gr) anode and LiNi0.6Mn0.2Co0.2O2 (NMC622) cathode cells at room temperature, 45, and 60 °C working temperatures for PV modules are explored. The electrochemical performance of both half and full cells are tested using a specially formulated electrolyte, 1 M LiPF6 in ethylene carbonate: diethyl carbonate, with 5 wt % fluoroethylene carbonate, 2 wt % vinylene carbonate, and 1 wt % (2-cyanoethyl)triethoxysilane. To demonstrate solar charging, perovskite solar cells (PSCs) are coupled to the developed batteries, following the evaluation of each device. An overall efficiency of 8.74% under standard PV test conditions is obtained for the PSC charged lithium-ion battery via the direct-current–direct-current converter, showing the promising applicability of silicon/graphite-based anodes in the PV–battery integrated system.
536 _ _ |a 1214 - Modules, stability, performance and specific applications (POF4-121)
|0 G:(DE-HGF)POF4-1214
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Kin, Li-Chung
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Koehler, Julian
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Astakhov, Oleksandr
|0 P:(DE-Juel1)130212
|b 3
700 1 _ |a liu, zhifa
|0 P:(DE-Juel1)169264
|b 4
700 1 _ |a Kirchartz, Thomas
|0 P:(DE-Juel1)159457
|b 5
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)143905
|b 6
700 1 _ |a Eshetu, Gebrekidan Gebresilassie
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Merdzhanova, Tsvetelina
|0 P:(DE-Juel1)130268
|b 8
700 1 _ |a Figgemeier, Egbert
|0 P:(DE-Juel1)165182
|b 9
|e Corresponding author
773 _ _ |a 10.1021/acsomega.2c02940
|0 PERI:(DE-600)2861993-6
|p 27532
|t ACS omega
|v 7
|y 2022
|x 2470-1343
856 4 _ |u https://juser.fz-juelich.de/record/908758/files/APC600321637.pdf
856 4 _ |u https://juser.fz-juelich.de/record/908758/files/acsomega.2c02940.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:908758
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130212
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)169264
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)159457
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)143905
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130268
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)165182
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1214
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS OMEGA : 2021
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-07-04T14:54:24Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-07-04T14:54:24Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-07-04T14:54:24Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 1
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217
981 _ _ |a I:(DE-Juel1)IMD-3-20101013
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21