000908795 001__ 908795
000908795 005__ 20240712113118.0
000908795 0247_ $$2doi$$a10.1149/1945-7111/ac644e
000908795 0247_ $$2ISSN$$a0013-4651
000908795 0247_ $$2ISSN$$a0096-4743
000908795 0247_ $$2ISSN$$a0096-4786
000908795 0247_ $$2ISSN$$a1945-6859
000908795 0247_ $$2ISSN$$a1945-7111
000908795 0247_ $$2ISSN$$a2156-7395
000908795 0247_ $$2Handle$$a2128/34489
000908795 0247_ $$2WOS$$aWOS:000782495000001
000908795 037__ $$aFZJ-2022-02840
000908795 082__ $$a660
000908795 1001_ $$00000-0002-5227-3540$$aKühnle, Hannes$$b0
000908795 245__ $$aIn Situ Optical and Electrochemical Investigations of Lithium Depositions as a Function of Current Densities
000908795 260__ $$aBristol$$bIOP Publishing$$c2022
000908795 3367_ $$2DRIVER$$aarticle
000908795 3367_ $$2DataCite$$aOutput Types/Journal article
000908795 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1685624142_29431
000908795 3367_ $$2BibTeX$$aARTICLE
000908795 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908795 3367_ $$00$$2EndNote$$aJournal Article
000908795 520__ $$aThe electrodeposition behavior of lithium metal as a function of the current density at room temperature was investigated in a symmetrical face‑to‑face in‑situ optical cell. After a defined initial contact time between electrode and electrolyte, various current densities in the range of 0.05 mA cm−2 to 10 mA cm−2 were tested. Constant current phases, electrochemical impedance spectroscopy measurements and in situ images of the working electrode were recorded and results were compared. Two regimes of lithium deposition with different optical and electrochemical characteristics were identified as a function of current density. The first regime, at low current densities (0.05 mA cm−2–0.5 mA cm−2), showed none to tiny lithium depositions with sporadic large lithium structures at the higher end of this range. The second regime, at high current densities (2 mA cm−2–10 mA cm−2), showed many smaller, deposited lithium structures. The experimental results are discussed in the context of the formation and presence of metal-electrolyte interphases presumably by chemical reactions between lithium and electrolyte, current density and their interactions with each other. The correlation of fundamental parameters of lithium metal deposition with current density must be taken into account for the development of lithium metal-based energy storage devices.
000908795 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000908795 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908795 7001_ $$aKnobbe, Edwin$$b1
000908795 7001_ $$0P:(DE-Juel1)165182$$aFiggemeier, Egbert$$b2
000908795 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/1945-7111/ac644e$$gVol. 169, no. 4, p. 040528 -$$n4$$p040528 -$$tJournal of the Electrochemical Society$$v169$$x0013-4651$$y2022
000908795 8564_ $$uhttps://juser.fz-juelich.de/record/908795/files/K%C3%BChnle_2022_J._Electrochem._Soc._169_040528-1.pdf$$yOpenAccess
000908795 8564_ $$uhttps://juser.fz-juelich.de/record/908795/files/PostPrint%20Hannes%20K%C3%BChnle%20et%20al%202021%20J.%20Electrochem.%20Soc.%20168%20020510.pdf$$yOpenAccess
000908795 8767_ $$d2022-07-22$$eHybrid-OA$$jPublish and Read
000908795 909CO $$ooai:juser.fz-juelich.de:908795$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
000908795 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165182$$aForschungszentrum Jülich$$b2$$kFZJ
000908795 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000908795 9141_ $$y2023
000908795 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000908795 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000908795 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-27
000908795 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908795 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000908795 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000908795 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000908795 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000908795 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908795 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SOC : 2019$$d2021-01-27
000908795 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000908795 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000908795 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000908795 9801_ $$aAPC
000908795 9801_ $$aFullTexts
000908795 980__ $$ajournal
000908795 980__ $$aVDB
000908795 980__ $$aUNRESTRICTED
000908795 980__ $$aI:(DE-Juel1)IEK-12-20141217
000908795 980__ $$aAPC
000908795 981__ $$aI:(DE-Juel1)IMD-4-20141217