Conference Presentation (Invited) FZJ-2022-02871

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Transport and magnetic properties of the topological (Weyl) semimetal: Hexagonal - (Mn1-αFeα)3Ge

 ;  ;  ;  ;  ;  ;  ;

2022

DPG-Tagung der Sektion Kondensierte Materie (SKM), Campus der Universität RegensburgCampus der Universität Regensburg, Germany, 4 Sep 2022 - 9 Sep 20222022-09-042022-09-09

Please use a persistent id in citations:

Abstract: Weyl semimetal (WS) - Mn3Ge displays a large anomalous Hall effect (AHE), which originates from the non-zero Berry curvature. The location and separation of the Weyl nodes can be tuned using a suitable dopant. So, we have studied the evolution of transport properties of single-crystal (Mn1−αFeα)3Ge. We observed that the strength of AHE and chiral anomaly weakens drastically with an increase in Fe doping and vanishes beyond α = 0.22. Polarized and unpolarized neutron diffraction of α = 0.22 showed that the magnetic structure of the compound remains the same as that of the parent compound, only in the temperature regime where AHE and the chiral anomaly are observed. These observations suggest the location of Weyl points and separation between a pair of Weyl points change significantly with Fe doping. Therefore, suitable dopants can be used to tune the transport properties of the WS.


Contributing Institute(s):
  1. Streumethoden (JCNS-2)
  2. Streumethoden (PGI-4)
  3. JARA-FIT (JARA-FIT)
  4. JCNS-ILL (JCNS-ILL)
Research Program(s):
  1. 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) (POF4-632)
  2. 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4) (POF4-6G4)

Appears in the scientific report 2022
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Document types > Presentations > Conference Presentations
Institute Collections > JCNS > JCNS-ILL
Institute Collections > JCNS > JCNS-2
JARA > JARA > JARA-JARA\-FIT
Institute Collections > PGI > PGI-4
Workflow collections > Public records
Publications database
Open Access

 Record created 2022-07-27, last modified 2025-01-29


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)