000908874 001__ 908874
000908874 005__ 20230307154512.0
000908874 0247_ $$2doi$$a10.3390/nano12111790
000908874 0247_ $$2Handle$$a2128/31638
000908874 0247_ $$2pmid$$a35683648
000908874 0247_ $$2WOS$$aWOS:000808825800001
000908874 037__ $$aFZJ-2022-02888
000908874 082__ $$a540
000908874 1001_ $$0P:(DE-HGF)0$$aMulder, Liesbeth$$b0
000908874 245__ $$aRevisiting the van der Waals Epitaxy in the Case of (Bi0.4Sb0.6)2Te3 Thin Films on Dissimilar Substrates
000908874 260__ $$aBasel$$bMDPI$$c2022
000908874 3367_ $$2DRIVER$$aarticle
000908874 3367_ $$2DataCite$$aOutput Types/Journal article
000908874 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661154775_7222
000908874 3367_ $$2BibTeX$$aARTICLE
000908874 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908874 3367_ $$00$$2EndNote$$aJournal Article
000908874 520__ $$aUltrathin films of the ternary topological insulator (Bi0.4Sb0.6)2Te3 are fabricated by molecular beam epitaxy. Although it is generally assumed that the ternary topological insulator tellurides grow by van der Waals epitaxy, our results show that the influence of the substrate is substantial and governs the formation of defects, mosaicity, and twin domains. For this comparative study, InP (111)A, Al2O3 (001), and SrTiO3 (111) substrates were selected. While the films deposited on lattice-matched InP (111)A show van der Waals epitaxial relations, our results point to a quasi-van der Waals epitaxy for the films grown on substrates with a larger lattice mismatch.
000908874 536__ $$0G:(DE-HGF)POF4-5224$$a5224 - Quantum Networking (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000908874 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908874 7001_ $$0P:(DE-HGF)0$$aWielens, Daan H.$$b1
000908874 7001_ $$0P:(DE-HGF)0$$aBirkhölzer, Yorick A.$$b2
000908874 7001_ $$0P:(DE-HGF)0$$aBrinkman, Alexander$$b3
000908874 7001_ $$0P:(DE-Juel1)188576$$aConcepción Diaz, Omar$$b4$$eCorresponding author
000908874 773__ $$0PERI:(DE-600)2662255-5$$a10.3390/nano12111790$$gVol. 12, no. 11, p. 1790 -$$n11$$p1790 -$$tNanomaterials$$v12$$x2079-4991$$y2022
000908874 8564_ $$uhttps://juser.fz-juelich.de/record/908874/files/nanomaterials-12-01790-v2.pdf$$yOpenAccess
000908874 8767_ $$d2022-07-28$$eAPC$$jZahlung erfolgt$$zOABLE
000908874 909CO $$ooai:juser.fz-juelich.de:908874$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000908874 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188576$$aForschungszentrum Jülich$$b4$$kFZJ
000908874 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5224$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000908874 9141_ $$y2022
000908874 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000908874 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908874 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000908874 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000908874 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908874 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000908874 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOMATERIALS-BASEL : 2021$$d2022-11-12
000908874 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000908874 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000908874 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-26T21:24:06Z
000908874 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-26T21:24:06Z
000908874 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-08-26T21:24:06Z
000908874 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000908874 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000908874 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000908874 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000908874 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000908874 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOMATERIALS-BASEL : 2021$$d2022-11-12
000908874 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000908874 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000908874 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000908874 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000908874 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000908874 980__ $$ajournal
000908874 980__ $$aVDB
000908874 980__ $$aUNRESTRICTED
000908874 980__ $$aI:(DE-Juel1)PGI-9-20110106
000908874 980__ $$aAPC
000908874 9801_ $$aAPC
000908874 9801_ $$aFullTexts