000908993 001__ 908993
000908993 005__ 20240313103131.0
000908993 0247_ $$2doi$$a10.3389/fninf.2022.884033
000908993 0247_ $$2Handle$$a2128/31649
000908993 0247_ $$2pmid$$a35846779
000908993 0247_ $$2WOS$$aWOS:000827439200001
000908993 037__ $$aFZJ-2022-02935
000908993 082__ $$a610
000908993 1001_ $$0P:(DE-Juel1)168379$$aTrensch, Guido$$b0$$eCorresponding author$$ufzj
000908993 245__ $$aA System-on-Chip Based Hybrid Neuromorphic Compute Node Architecture for Reproducible Hyper-Real-Time Simulations of Spiking Neural Networks
000908993 260__ $$aLausanne$$bFrontiers Research Foundation$$c2022
000908993 3367_ $$2DRIVER$$aarticle
000908993 3367_ $$2DataCite$$aOutput Types/Journal article
000908993 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661158256_2170
000908993 3367_ $$2BibTeX$$aARTICLE
000908993 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908993 3367_ $$00$$2EndNote$$aJournal Article
000908993 520__ $$aDespite the great strides neuroscience has made in recent decades, the underlying principles of brain function remain largely unknown. Advancing the field strongly depends on the ability to study large-scale neural networks and perform complex simulations. In this context, simulations in hyper-real-time are of high interest, as they would enable both comprehensive parameter scans and the study of slow processes, such as learning and long-term memory. Not even the fastest supercomputer available today is able to meet the challenge of accurate and reproducible simulation with hyper-real acceleration. The development of novel neuromorphic computer architectures holds out promise, but the high costs and long development cycles for application-specific hardware solutions makes it difficult to keep pace with the rapid developments in neuroscience. However, advances in System-on-Chip (SoC) device technology and tools are now providing interesting new design possibilities for application-specific implementations. Here, we present a novel hybrid software-hardware architecture approach for a neuromorphic compute node intended to work in a multi-node cluster configuration. The node design builds on the Xilinx Zynq-7000 SoC device architecture that combines a powerful programmable logic gate array (FPGA) and a dual-core ARM Cortex-A9 processor extension on a single chip. Our proposed architecture makes use of both and takes advantage of their tight coupling. We show that available SoC device technology can be used to build smaller neuromorphic computing clusters that enable hyper-real-time simulation of networks consisting of tens of thousands of neurons, and are thus capable of meeting the high demands for modeling and simulation in neuroscience.
000908993 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000908993 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
000908993 536__ $$0G:(DE-HGF)SO-092$$aACA - Advanced Computing Architectures (SO-092)$$cSO-092$$x2
000908993 536__ $$0G:(GEPRIS)491111487$$aOpen-Access-Publikationskosten Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x3
000908993 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x4
000908993 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908993 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b1$$ufzj
000908993 770__ $$aNeuroscience, Computing, Performance, and Benchmarks: Why It Matters to Neuroscience How Fast We Can Compute
000908993 773__ $$0PERI:(DE-600)2452979-5$$a10.3389/fninf.2022.884033$$gVol. 16, p. 884033$$p884033$$tFrontiers in neuroinformatics$$v16$$x1662-5196$$y2022
000908993 8564_ $$uhttps://juser.fz-juelich.de/record/908993/files/fninf-16-884033.pdf$$yOpenAccess
000908993 8767_ $$d2022-12-27$$eAPC$$jDeposit$$z2507,50 USD
000908993 909CO $$ooai:juser.fz-juelich.de:908993$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000908993 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168379$$aForschungszentrum Jülich$$b0$$kFZJ
000908993 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)168379$$aRWTH Aachen$$b0$$kRWTH
000908993 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b1$$kFZJ
000908993 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)151166$$aRWTH Aachen$$b1$$kRWTH
000908993 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000908993 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
000908993 9141_ $$y2022
000908993 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000908993 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
000908993 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908993 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908993 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000908993 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000908993 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000908993 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROINFORM : 2021$$d2022-11-24
000908993 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-24
000908993 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-24
000908993 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-11T13:08:14Z
000908993 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-11T13:08:14Z
000908993 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-11T13:08:14Z
000908993 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-24
000908993 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-24
000908993 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-24
000908993 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-24
000908993 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-24
000908993 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000908993 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000908993 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000908993 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000908993 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x1
000908993 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x2
000908993 9801_ $$aFullTexts
000908993 980__ $$ajournal
000908993 980__ $$aVDB
000908993 980__ $$aUNRESTRICTED
000908993 980__ $$aI:(DE-Juel1)JSC-20090406
000908993 980__ $$aI:(DE-Juel1)INM-6-20090406
000908993 980__ $$aI:(DE-Juel1)IAS-6-20130828
000908993 980__ $$aAPC
000908993 981__ $$aI:(DE-Juel1)IAS-6-20130828