000909066 001__ 909066
000909066 005__ 20230123110638.0
000909066 0247_ $$2doi$$a10.1109/LGRS.2022.3173052
000909066 0247_ $$2ISSN$$a1545-598X
000909066 0247_ $$2ISSN$$a1558-0571
000909066 0247_ $$2Handle$$a2128/31655
000909066 0247_ $$2WOS$$aWOS:000800169600001
000909066 037__ $$aFZJ-2022-02984
000909066 082__ $$a550
000909066 1001_ $$00000-0002-1858-9920$$aMoreno-Alvarez, Sergio$$b0
000909066 245__ $$aRemote Sensing Image Classification Using CNNs With Balanced Gradient for Distributed Heterogeneous Computing
000909066 260__ $$aNew York, NY$$bIEEE$$c2022
000909066 3367_ $$2DRIVER$$aarticle
000909066 3367_ $$2DataCite$$aOutput Types/Journal article
000909066 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661165350_2170
000909066 3367_ $$2BibTeX$$aARTICLE
000909066 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909066 3367_ $$00$$2EndNote$$aJournal Article
000909066 520__ $$aLand-cover classification methods are based on the processing of large image volumes to accurately extract representative features. Particularly, convolutional models provide notable characterization properties for image classification tasks. Distributed learning mechanisms on high-performance computing platforms have been proposed to speed up the processing, while achieving an efficient feature extraction. High-performance computing platforms are commonly composed of a combination of central processing units (CPUs) and graphics processing units (GPUs) with different computational capabilities. As a result, current homogeneous workload distribution techniques for deep learning (DL) become obsolete due to their inefficient use of computational resources. To address this, new computational balancing proposals, such as heterogeneous data parallelism, have been implemented. Nevertheless, these techniques should be improved to handle the peculiarities of working with heterogeneous data workloads in the training of distributed DL models. The objective of handling heterogeneous workloads for current platforms motivates the development of this work. This letter proposes an innovative heterogeneous gradient calculation applied to land-cover classification tasks through convolutional models, considering the data amount assigned to each device in the platform while maintaining the acceleration. Extensive experimentation has been conducted on multiple datasets, considering different deep models on heterogeneous platforms to demonstrate the performance of the proposed methodology.
000909066 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000909066 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
000909066 536__ $$0G:(EU-Grant)730897$$aHPC-EUROPA3 - Transnational Access Programme for a Pan-European Network of HPC Research Infrastructures and Laboratories for scientific computing (730897)$$c730897$$fH2020-INFRAIA-2016-1$$x2
000909066 536__ $$0G:(EU-Grant)754304$$aDEEP-EST - DEEP - Extreme Scale Technologies (754304)$$c754304$$fH2020-FETHPC-2016$$x3
000909066 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909066 7001_ $$00000-0003-1030-3729$$aPaoletti, Mercedes E.$$b1
000909066 7001_ $$0P:(DE-Juel1)171343$$aCavallaro, Gabriele$$b2
000909066 7001_ $$00000-0002-4264-7473$$aRico, Juan A.$$b3
000909066 7001_ $$00000-0001-6701-961X$$aHaut, Juan M.$$b4
000909066 773__ $$0PERI:(DE-600)2138738-2$$a10.1109/LGRS.2022.3173052$$gVol. 19, p. 1 - 5$$p1 - 5$$tIEEE geoscience and remote sensing letters$$v19$$x1545-598X$$y2022
000909066 8564_ $$uhttps://juser.fz-juelich.de/record/909066/files/Moreno_GRSL_Preprint.pdf$$yOpenAccess
000909066 909CO $$ooai:juser.fz-juelich.de:909066$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000909066 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171343$$aForschungszentrum Jülich$$b2$$kFZJ
000909066 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000909066 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
000909066 9141_ $$y2022
000909066 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000909066 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909066 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000909066 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE GEOSCI REMOTE S : 2021$$d2022-11-17
000909066 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000909066 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000909066 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000909066 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-17
000909066 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000909066 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bIEEE GEOSCI REMOTE S : 2021$$d2022-11-17
000909066 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000909066 980__ $$ajournal
000909066 980__ $$aVDB
000909066 980__ $$aUNRESTRICTED
000909066 980__ $$aI:(DE-Juel1)JSC-20090406
000909066 9801_ $$aFullTexts