Journal Article FZJ-2022-02984

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Remote Sensing Image Classification Using CNNs With Balanced Gradient for Distributed Heterogeneous Computing

 ;  ;  ;  ;

2022
IEEE New York, NY

IEEE geoscience and remote sensing letters 19, 1 - 5 () [10.1109/LGRS.2022.3173052]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Land-cover classification methods are based on the processing of large image volumes to accurately extract representative features. Particularly, convolutional models provide notable characterization properties for image classification tasks. Distributed learning mechanisms on high-performance computing platforms have been proposed to speed up the processing, while achieving an efficient feature extraction. High-performance computing platforms are commonly composed of a combination of central processing units (CPUs) and graphics processing units (GPUs) with different computational capabilities. As a result, current homogeneous workload distribution techniques for deep learning (DL) become obsolete due to their inefficient use of computational resources. To address this, new computational balancing proposals, such as heterogeneous data parallelism, have been implemented. Nevertheless, these techniques should be improved to handle the peculiarities of working with heterogeneous data workloads in the training of distributed DL models. The objective of handling heterogeneous workloads for current platforms motivates the development of this work. This letter proposes an innovative heterogeneous gradient calculation applied to land-cover classification tasks through convolutional models, considering the data amount assigned to each device in the platform while maintaining the acceleration. Extensive experimentation has been conducted on multiple datasets, considering different deep models on heterogeneous platforms to demonstrate the performance of the proposed methodology.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) (POF4-511)
  2. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)
  3. HPC-EUROPA3 - Transnational Access Programme for a Pan-European Network of HPC Research Infrastructures and Laboratories for scientific computing (730897) (730897)
  4. DEEP-EST - DEEP - Extreme Scale Technologies (754304) (754304)

Appears in the scientific report 2022
Database coverage:
Medline ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Essential Science Indicators ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Workflow collections > Public records
Institute Collections > JSC
Publications database
Open Access

 Record created 2022-08-06, last modified 2023-01-23


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)