000909069 001__ 909069
000909069 005__ 20230123110638.0
000909069 0247_ $$2doi$$a10.1038/s41467-022-30042-y
000909069 0247_ $$2pmid$$apmid:35501361
000909069 0247_ $$2pmc$$apmc:PMC9061850
000909069 0247_ $$2Handle$$a2128/31660
000909069 0247_ $$2WOS$$aWOS:000789924700014
000909069 037__ $$aFZJ-2022-02987
000909069 041__ $$aEnglish
000909069 082__ $$a500
000909069 1001_ $$00000-0002-0775-2075$$aTörner, Ricarda$$b0
000909069 245__ $$aStructural basis for the inhibition of IAPP fibril formation by the co-chaperonin prefoldin.
000909069 260__ $$a[London]$$bNature Publishing Group UK$$c2022
000909069 3367_ $$2DRIVER$$aarticle
000909069 3367_ $$2DataCite$$aOutput Types/Journal article
000909069 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661167318_2171
000909069 3367_ $$2BibTeX$$aARTICLE
000909069 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909069 3367_ $$00$$2EndNote$$aJournal Article
000909069 520__ $$aChaperones, as modulators of protein conformational states, are key cellular actors to prevent the accumulation of fibrillar aggregates. Here, we integrated kinetic investigations with structural studies to elucidate how the ubiquitous co-chaperonin prefoldin inhibits diabetes associated islet amyloid polypeptide (IAPP) fibril formation. We demonstrated that both human and archaeal prefoldin interfere similarly with the IAPP fibril elongation and secondary nucleation pathways. Using archaeal prefoldin model, we combined nuclear magnetic resonance spectroscopy with electron microscopy to establish that the inhibition of fibril formation is mediated by the binding of prefoldin's coiled-coil helices to the flexible IAPP N-terminal segment accessible on the fibril surface and fibril ends. Atomic force microscopy demonstrates that binding of prefoldin to IAPP leads to the formation of lower amounts of aggregates, composed of shorter fibrils, clustered together. Linking structural models with observed fibrillation inhibition processes opens perspectives for understanding the interference between natural chaperones and formation of disease-associated amyloids.
000909069 536__ $$0G:(DE-HGF)POF4-5244$$a5244 - Information Processing in Neuronal Networks (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000909069 536__ $$0G:(EU-Grant)726368$$aBETACONTROL - Control of amyloid formation via beta-hairpin molecular recognition features (726368)$$c726368$$fERC-2016-COG$$x1
000909069 588__ $$aDataset connected to CrossRef, PubMed, , Journals: juser.fz-juelich.de
000909069 650_7 $$2NLM Chemicals$$aAmyloid
000909069 650_7 $$2NLM Chemicals$$aIslet Amyloid Polypeptide
000909069 650_7 $$2NLM Chemicals$$aMolecular Chaperones
000909069 650_7 $$2NLM Chemicals$$aprefoldin
000909069 650_7 $$0EC 3.6.1.-$$2NLM Chemicals$$aChaperonins
000909069 650_2 $$2MeSH$$aAmyloid: metabolism
000909069 650_2 $$2MeSH$$aChaperonins
000909069 650_2 $$2MeSH$$aHumans
000909069 650_2 $$2MeSH$$aIslet Amyloid Polypeptide
000909069 650_2 $$2MeSH$$aMolecular Chaperones: metabolism
000909069 7001_ $$0P:(DE-Juel1)176456$$aKupreichyk, Tatsiana$$b1
000909069 7001_ $$0P:(DE-Juel1)145165$$aGremer, Lothar$$b2
000909069 7001_ $$00000-0002-8279-3053$$aDebled, Elisa Colas$$b3
000909069 7001_ $$0P:(DE-HGF)0$$aFenel, Daphna$$b4
000909069 7001_ $$0P:(DE-Juel1)165908$$aSchemmert, Sarah$$b5$$ufzj
000909069 7001_ $$0P:(DE-HGF)0$$aGans, Pierre$$b6
000909069 7001_ $$0P:(DE-Juel1)132029$$aWillbold, Dieter$$b7
000909069 7001_ $$00000-0002-1459-3201$$aSchoehn, Guy$$b8
000909069 7001_ $$0P:(DE-Juel1)166306$$aHoyer, Wolfgang$$b9$$eCorresponding author
000909069 7001_ $$00000-0003-3278-3639$$aBoisbouvier, Jerome$$b10$$eCorresponding author
000909069 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-022-30042-y$$gVol. 13, no. 1, p. 2363$$n1$$p2363$$tNature Communications$$v13$$x2041-1723$$y2022
000909069 8564_ $$uhttps://juser.fz-juelich.de/record/909069/files/T%C3%B6rner%202022%20Nat%20Commun%2C%20Prefoldin-IAPP%20interaction.pdf$$yOpenAccess
000909069 909CO $$ooai:juser.fz-juelich.de:909069$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000909069 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176456$$aForschungszentrum Jülich$$b1$$kFZJ
000909069 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145165$$aForschungszentrum Jülich$$b2$$kFZJ
000909069 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165908$$aForschungszentrum Jülich$$b5$$kFZJ
000909069 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132029$$aForschungszentrum Jülich$$b7$$kFZJ
000909069 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166306$$aForschungszentrum Jülich$$b9$$kFZJ
000909069 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000909069 9141_ $$y2022
000909069 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000909069 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000909069 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000909069 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909069 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-02
000909069 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000909069 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000909069 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2021$$d2022-11-11
000909069 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000909069 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000909069 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-10-13T14:44:21Z
000909069 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-10-13T14:44:21Z
000909069 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-10-13T14:44:21Z
000909069 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000909069 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000909069 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-11
000909069 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-11
000909069 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-11
000909069 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2022-11-11
000909069 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000909069 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2021$$d2022-11-11
000909069 920__ $$lyes
000909069 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
000909069 980__ $$ajournal
000909069 980__ $$aVDB
000909069 980__ $$aUNRESTRICTED
000909069 980__ $$aI:(DE-Juel1)IBI-7-20200312
000909069 9801_ $$aFullTexts