000909124 001__ 909124
000909124 005__ 20250701125920.0
000909124 0247_ $$2doi$$a10.1002/qute.202200043
000909124 0247_ $$2Handle$$a2128/31849
000909124 0247_ $$2WOS$$aWOS:000835848900001
000909124 037__ $$aFZJ-2022-03024
000909124 082__ $$a530
000909124 1001_ $$0P:(DE-Juel1)168208$$aLeis, Arthur$$b0
000909124 245__ $$aProbing Edge State Conductance in Ultra‐Thin Topological Insulator Films
000909124 260__ $$aWeinheim$$bWiley-VCH Verlag$$c2022
000909124 3367_ $$2DRIVER$$aarticle
000909124 3367_ $$2DataCite$$aOutput Types/Journal article
000909124 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1682678323_3941
000909124 3367_ $$2BibTeX$$aARTICLE
000909124 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909124 3367_ $$00$$2EndNote$$aJournal Article
000909124 520__ $$aQuantum spin Hall (QSH) insulators have unique electronic properties, comprising a band gap in their 2D interior and 1D spin-polarized edge states in which current flows ballistically. In scanning tunneling microscopy (STM), the edge states manifest themselves as an enhanced local density of states (LDOS). However, there is a significant research gap between the observation of edge states in nanoscale spectroscopy, and the detection of ballistic transport in edge channels which typically relies on transport experiments with microscale lithographic contacts. Here, few-layer films of the 3D topological insulator (BixSb)2Te3 are studied, for which a topological transition to a 2D topological QSH insulator phase has been proposed. Indeed, an edge state in the LDOS is observed within the band gap. Yet, in nanoscale transport experiments with a four-tip STM, two-quintuple-layer films do not exhibit a ballistic conductance in the edge channels and thus no QSH edge states. This demonstrates that the detection of edge states in spectroscopy can be misleading with regard to the identification of a QSH phase. In contrast, nanoscale multi-tip transport experiments are a robust method for effectively pinpointing ballistic edge channels, as opposed to trivial edge states, in quantum materials.
000909124 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000909124 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x1
000909124 536__ $$0G:(GEPRIS)443416235$$aDFG project 443416235 - 1D topologische Supraleitung und Majorana Zustände in van der Waals Heterostrukturen charakterisiert durch Rastersondenmikroskopie $$c443416235$$x2
000909124 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909124 7001_ $$0P:(DE-Juel1)171405$$aSchleenvoigt, Michael$$b1
000909124 7001_ $$0P:(DE-Juel1)180184$$aMoors, Kristof$$b2
000909124 7001_ $$0P:(DE-Juel1)133754$$aSoltner, Helmut$$b3
000909124 7001_ $$0P:(DE-Juel1)128762$$aCherepanov, Vasily$$b4
000909124 7001_ $$0P:(DE-Juel1)165984$$aSchüffelgen, Peter$$b5
000909124 7001_ $$0P:(DE-Juel1)128617$$aMussler, Gregor$$b6
000909124 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b7
000909124 7001_ $$0P:(DE-Juel1)128794$$aVoigtländer, Bert$$b8$$eCorresponding author
000909124 7001_ $$0P:(DE-Juel1)162163$$aLüpke, Felix$$b9$$ufzj
000909124 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b10
000909124 773__ $$0PERI:(DE-600)2885525-5$$a10.1002/qute.202200043$$gp. 2200043 -$$n9$$p2200043$$tAdvanced quantum technologies$$v5$$x2511-9044$$y2022
000909124 8564_ $$uhttps://juser.fz-juelich.de/record/909124/files/Adv%20Quantum%20Tech%20-%202022%20-%20Leis%20-%20Probing%20Edge%20State%20Conductance%20in%20Ultra%E2%80%90Thin%20Topological%20Insulator%20Films.pdf$$yOpenAccess
000909124 8767_ $$d2022-02-16$$eHybrid-OA$$jDEAL
000909124 909CO $$ooai:juser.fz-juelich.de:909124$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000909124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168208$$aForschungszentrum Jülich$$b0$$kFZJ
000909124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171405$$aForschungszentrum Jülich$$b1$$kFZJ
000909124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180184$$aForschungszentrum Jülich$$b2$$kFZJ
000909124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133754$$aForschungszentrum Jülich$$b3$$kFZJ
000909124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128762$$aForschungszentrum Jülich$$b4$$kFZJ
000909124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165984$$aForschungszentrum Jülich$$b5$$kFZJ
000909124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich$$b6$$kFZJ
000909124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b7$$kFZJ
000909124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128794$$aForschungszentrum Jülich$$b8$$kFZJ
000909124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162163$$aForschungszentrum Jülich$$b9$$kFZJ
000909124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b10$$kFZJ
000909124 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000909124 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x1
000909124 9141_ $$y2022
000909124 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000909124 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000909124 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000909124 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000909124 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000909124 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-25$$wger
000909124 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909124 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV QUANTUM TECHNOL : 2021$$d2022-11-10
000909124 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-10
000909124 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2022-11-10
000909124 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-10
000909124 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-10
000909124 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-10
000909124 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bADV QUANTUM TECHNOL : 2021$$d2022-11-10
000909124 920__ $$lyes
000909124 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
000909124 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x1
000909124 9201_ $$0I:(DE-Juel1)ZEA-1-20090406$$kZEA-1$$lZentralinstitut für Technologie$$x2
000909124 9801_ $$aAPC
000909124 9801_ $$aFullTexts
000909124 980__ $$ajournal
000909124 980__ $$aVDB
000909124 980__ $$aI:(DE-Juel1)PGI-3-20110106
000909124 980__ $$aI:(DE-Juel1)PGI-9-20110106
000909124 980__ $$aI:(DE-Juel1)ZEA-1-20090406
000909124 980__ $$aAPC
000909124 980__ $$aUNRESTRICTED
000909124 981__ $$aI:(DE-Juel1)ITE-20250108