001     909212
005     20240712113130.0
024 7 _ |a 10.1002/eem2.12469
|2 doi
024 7 _ |a WOS:000934985700001
|2 WOS
037 _ _ |a FZJ-2022-03072
082 _ _ |a 333.7
100 1 _ |a Shaji, Ishamol
|0 P:(DE-Juel1)174187
|b 0
|u fzj
245 _ _ |a Mechanistically Novel Frontal‐Inspired in situ Photopolymerization: An Efficient Electrode|Electrolyte Interface Engineering Method for High Energy Lithium Metal Polymer Batteries
260 _ _ |a Hoboken
|c 2023
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1705060615_20197
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The solvent-free in situ polymerization technique has the potential to tailor-make conformal interfaces that are essential for developing durable and safe lithium metal polymer batteries (LMPBs). Hence, much attention has been given to the eco-friendly and rapid ultraviolet (UV)-induced in situ photopolymerization process to prepare solid-state polymer electrolytes. In this respect, an innovative method is proposed here to overcome the challenges of UV-induced photopolymerization (UV-curing) in the zones where UV-light cannot penetrate, especially in LMPBs where thick electrodes are used. The proposed frontal-inspired photopolymerization (FIPP) process is a diverged frontal-based technique that uses two classes (dual) of initiators to improve the slow reaction kinetics of allyl-based monomers/oligomers by at least 50% compared with the conventional UV-curing process. The possible reaction mechanism occurring in FIPP is demonstrated using density functional theory calculations and spectroscopic investigations. Indeed, the initiation mechanism identified for the FIPP relies on a photochemical pathway rather than an exothermic propagating front forms during the UV-irradiation step as the case with the classical frontal photopolymerization technique. Besides, the FIPP-based in situ cell fabrication using dual initiators is advantageous over both the sandwich cell assembly and conventional in situ photopolymerization in overcoming the limitations of mass transport and active material utilization in high energy and high power LMPBs that use thick electrodes. Furthermore, the LMPB cells fabricated using the in situ-FIPP process with high mass loading LiFePO4 electrodes (5.2 mg cm-2) demonstrate higher rate capability, and a 50% increase in specific capacity against a sandwich cell encouraging the use of this innovative process in large-scale solid-state battery production.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Diddens, Diddo
|0 P:(DE-Juel1)169877
|b 1
|u fzj
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 2
|u fzj
700 1 _ |a Nair, Jijeesh Ravi
|0 P:(DE-Juel1)171863
|b 3
773 _ _ |a 10.1002/eem2.12469
|0 PERI:(DE-600)2945579-0
|n 6
|p e12469
|t Energy & Environmental Materials
|v 6
|y 2023
|x 2575-0356
856 4 _ |u https://juser.fz-juelich.de/record/909212/files/Energy%20Environ%20Materials%20-%202022%20-%20Shaji%20-%20Mechanistically%20Novel%20Frontal%E2%80%90Inspired%20In%20Situ%20Photopolymerization%20An.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/909212/files/Energy%20Environ%20Materials%20-%202022%20-%20Shaji%20-%20Mechanistically%20Novel%20Frontal%E2%80%90Inspired%20In%20Situ%20Photopolymerization%20An.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/909212/files/Energy%20Environ%20Materials%20-%202022%20-%20Shaji%20-%20Mechanistically%20Novel%20Frontal%E2%80%90Inspired%20In%20Situ%20Photopolymerization%20An.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/909212/files/Energy%20Environ%20Materials%20-%202022%20-%20Shaji%20-%20Mechanistically%20Novel%20Frontal%E2%80%90Inspired%20In%20Situ%20Photopolymerization%20An.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/909212/files/Energy%20Environ%20Materials%20-%202022%20-%20Shaji%20-%20Mechanistically%20Novel%20Frontal%E2%80%90Inspired%20In%20Situ%20Photopolymerization%20An.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:909212
|p OpenAPC_DEAL
|p VDB
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174187
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)169877
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171863
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGY ENVIRON MATER : 2022
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-29
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ENERGY ENVIRON MATER : 2022
|d 2023-08-29
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a APC
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21