Book/Dissertation / PhD Thesis FZJ-2022-03102

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
High-Performance Computing Approach to Hybrid Functionals in the All-Electron DFT Code FLEUR



2022
Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag Jülich
ISBN: 978-3-95806-639-7

Jülich : Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag, Schriften des Forschungszentrums Jülich Reihe Schlüsseltechnologien / Key Technologies 257, xi, 109 () = Dissertation, RWTH Aachen University, 2022

Please use a persistent id in citations:

Abstract: Virtual materials design attempts to use computational methods to discover new materials with superior properties within the vast space of all conceivable materials. Density-functional theory (DFT) is central to this field, enabling scientists to predict material properties from first principles, i.e. without relying on external parameters or experimental values. While standard DFT is capable of predicting many materials with satisfying accuracy, it struggles with some properties such as details of the electronic structure or certain material classes, e.g. materials exhibiting strongly correlated electrons. This has created a need for methods with greater predictive power. One such class of methods are hybrid exchange-correlation functionals which combine the exact Hartree-Fock exchange with local exchange-correlation functionals, resulting in highly accurate predictions for many insulating or semiconductor materials. However, the computational cost of hybrid functionals increases rapidly with system size and limits their application to small systems. This thesis aims to solve the computational challenge posed by hybrid functionals in large systems by utilizing the massive computational power of today’s supercomputers


Note: Dissertation, RWTH Aachen University, 2022

Contributing Institute(s):
  1. Quanten-Theorie der Materialien (PGI-1)
  2. Quanten-Theorie der Materialien (IAS-1)
  3. JARA-FIT (JARA-FIT)
  4. JARA - HPC (JARA-HPC)
Research Program(s):
  1. 5211 - Topological Matter (POF4-521) (POF4-521)

Appears in the scientific report 2022
Database coverage:
Creative Commons Attribution CC BY 4.0 ; OpenAccess
Click to display QR Code for this record

The record appears in these collections:
JARA > JARA > JARA-JARA\-FIT
JARA > JARA > JARA-JARA\-HPC
Institute Collections > IAS > IAS-1
Document types > Theses > Ph.D. Theses
Institute Collections > PGI > PGI-1
Document types > Books > Books
Workflow collections > Public records
Publications database
Open Access

 Record created 2022-08-23, last modified 2022-09-06


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)