000909380 001__ 909380
000909380 005__ 20240712112813.0
000909380 0247_ $$2doi$$a10.1142/S179360472240001X
000909380 0247_ $$2Handle$$a2128/32659
000909380 0247_ $$2WOS$$aWOS:000848584400001
000909380 037__ $$aFZJ-2022-03168
000909380 041__ $$aEnglish
000909380 082__ $$a540
000909380 1001_ $$0P:(DE-Juel1)180280$$aLu, Xin$$b0$$eCorresponding author
000909380 245__ $$aLithium Phosphosulfide Electrolytes for Solid-State Batteries: Part I
000909380 260__ $$aSingapore [u.a.]$$bWorld Scientific$$c2022
000909380 3367_ $$2DRIVER$$aarticle
000909380 3367_ $$2DataCite$$aOutput Types/Journal article
000909380 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1668687986_3654
000909380 3367_ $$2BibTeX$$aARTICLE
000909380 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909380 3367_ $$00$$2EndNote$$aJournal Article
000909380 520__ $$aA high performance and stable Li-ion conductive solid electrolyte is one of the key components for the future all-solid-state batteries with metallic lithium anodes. Phosphate, oxide and phosphosulfide-based inorganic solid electrolytes are currently under development. High ambient temperature Li-ion conductivities amounting up to 10−2 S cm−1 for the best performing electrolytes distinguish the phosphosulfides from the other material systems. Part I of the review starts with the motivation and background for the development of Li-phosphosulfide electrolytes followed by an overview of four different types of phosphosulfide electrolytes; the Li–P–S, thio-LiSICon, LGPS and the Argyrodite-type electrolytes. The core of part I is concerned with a detailed discussion of the phosphosulfide electrolyte types that have been under investigation already for a long time, the Li–P–S and the LiSICon. There is a multiplicity of different compositions within each of these types. The idea behind the outline of these sections is to point out the relations and differences between the different materials with respect to their chemistry related to the phase diagrams. Patterns for the relations among the materials identified in the phase diagrams are the base for a discussion of structure, processing and Li-ion conductivity within separate sections for each type and resulting in intra-type comparisons. The follow up part II will continue with a treatment of the more recently developed LGPS and Argyrodite-type electrolytes tracking the same concept, before addressing an inter-type comparison of ambient temperature Li-ion conductivities and the electrochemical stability of the electrolytes vs. metallic lithium. A final section in part II summarizes conclusions and provides perspectives for future research on Li-ion conductive phosphosulfide electrolytes.
000909380 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000909380 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b1
000909380 7001_ $$0P:(DE-Juel1)161141$$aYu, Shicheng$$b2
000909380 7001_ $$0P:(DE-HGF)0$$aHe, Hongying$$b3
000909380 7001_ $$0P:(DE-Juel1)180631$$aCamara, Osmane$$b4
000909380 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b5
000909380 7001_ $$0P:(DE-Juel1)172733$$aLiu, Zigeng$$b6
000909380 7001_ $$0P:(DE-Juel1)188297$$aWindmüller, Anna$$b7
000909380 7001_ $$0P:(DE-Juel1)144426$$aAlekseev, Evgeny$$b8
000909380 7001_ $$0P:(DE-Juel1)180432$$aBasak, Shibabrata$$b9
000909380 7001_ $$0P:(DE-HGF)0$$aLu, Li$$b10
000909380 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b11
000909380 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b12
000909380 773__ $$0PERI:(DE-600)2485263-6$$a10.1142/S179360472240001X$$n5$$p2240001$$tFunctional materials letters$$v15$$x1793-6047$$y2022
000909380 8564_ $$uhttps://juser.fz-juelich.de/record/909380/files/Invoice_30824441.pdf
000909380 8564_ $$uhttps://juser.fz-juelich.de/record/909380/files/Lithium%20phosphosulfide%20electrolytes%20for%20solid-state%20batteries%3A%20Part%20I.pdf$$yOpenAccess
000909380 8767_ $$830824441$$92022-08-30$$a1200183946$$d2022-08-31$$eHybrid-OA$$jZahlung erfolgt$$zUSD 2500,-
000909380 909CO $$ooai:juser.fz-juelich.de:909380$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000909380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180280$$aForschungszentrum Jülich$$b0$$kFZJ
000909380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich$$b1$$kFZJ
000909380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161141$$aForschungszentrum Jülich$$b2$$kFZJ
000909380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180631$$aForschungszentrum Jülich$$b4$$kFZJ
000909380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b5$$kFZJ
000909380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172733$$aForschungszentrum Jülich$$b6$$kFZJ
000909380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188297$$aForschungszentrum Jülich$$b7$$kFZJ
000909380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144426$$aForschungszentrum Jülich$$b8$$kFZJ
000909380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180432$$aForschungszentrum Jülich$$b9$$kFZJ
000909380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b11$$kFZJ
000909380 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b11$$kRWTH
000909380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b12$$kFZJ
000909380 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000909380 9141_ $$y2022
000909380 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000909380 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-26
000909380 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909380 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-26
000909380 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFUNCT MATER LETT : 2021$$d2022-11-16
000909380 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-16
000909380 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-16
000909380 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-16
000909380 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-16
000909380 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-16
000909380 920__ $$lyes
000909380 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000909380 9801_ $$aAPC
000909380 9801_ $$aFullTexts
000909380 980__ $$ajournal
000909380 980__ $$aVDB
000909380 980__ $$aUNRESTRICTED
000909380 980__ $$aI:(DE-Juel1)IEK-9-20110218
000909380 980__ $$aAPC
000909380 981__ $$aI:(DE-Juel1)IET-1-20110218