001     909380
005     20240712112813.0
024 7 _ |a 10.1142/S179360472240001X
|2 doi
024 7 _ |a 2128/32659
|2 Handle
024 7 _ |a WOS:000848584400001
|2 WOS
037 _ _ |a FZJ-2022-03168
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Lu, Xin
|0 P:(DE-Juel1)180280
|b 0
|e Corresponding author
245 _ _ |a Lithium Phosphosulfide Electrolytes for Solid-State Batteries: Part I
260 _ _ |a Singapore ˜[u.a.]œ
|c 2022
|b World Scientific
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1668687986_3654
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A high performance and stable Li-ion conductive solid electrolyte is one of the key components for the future all-solid-state batteries with metallic lithium anodes. Phosphate, oxide and phosphosulfide-based inorganic solid electrolytes are currently under development. High ambient temperature Li-ion conductivities amounting up to 10−2 S cm−1 for the best performing electrolytes distinguish the phosphosulfides from the other material systems. Part I of the review starts with the motivation and background for the development of Li-phosphosulfide electrolytes followed by an overview of four different types of phosphosulfide electrolytes; the Li–P–S, thio-LiSICon, LGPS and the Argyrodite-type electrolytes. The core of part I is concerned with a detailed discussion of the phosphosulfide electrolyte types that have been under investigation already for a long time, the Li–P–S and the LiSICon. There is a multiplicity of different compositions within each of these types. The idea behind the outline of these sections is to point out the relations and differences between the different materials with respect to their chemistry related to the phase diagrams. Patterns for the relations among the materials identified in the phase diagrams are the base for a discussion of structure, processing and Li-ion conductivity within separate sections for each type and resulting in intra-type comparisons. The follow up part II will continue with a treatment of the more recently developed LGPS and Argyrodite-type electrolytes tracking the same concept, before addressing an inter-type comparison of ambient temperature Li-ion conductivities and the electrochemical stability of the electrolytes vs. metallic lithium. A final section in part II summarizes conclusions and provides perspectives for future research on Li-ion conductive phosphosulfide electrolytes.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
700 1 _ |a Tsai, Chih-Long
|0 P:(DE-Juel1)156244
|b 1
700 1 _ |a Yu, Shicheng
|0 P:(DE-Juel1)161141
|b 2
700 1 _ |a He, Hongying
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Camara, Osmane
|0 P:(DE-Juel1)180631
|b 4
700 1 _ |a Tempel, Hermann
|0 P:(DE-Juel1)161208
|b 5
700 1 _ |a Liu, Zigeng
|0 P:(DE-Juel1)172733
|b 6
700 1 _ |a Windmüller, Anna
|0 P:(DE-Juel1)188297
|b 7
700 1 _ |a Alekseev, Evgeny
|0 P:(DE-Juel1)144426
|b 8
700 1 _ |a Basak, Shibabrata
|0 P:(DE-Juel1)180432
|b 9
700 1 _ |a Lu, Li
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 11
700 1 _ |a Kungl, Hans
|0 P:(DE-Juel1)157700
|b 12
773 _ _ |a 10.1142/S179360472240001X
|0 PERI:(DE-600)2485263-6
|n 5
|p 2240001
|t Functional materials letters
|v 15
|y 2022
|x 1793-6047
856 4 _ |u https://juser.fz-juelich.de/record/909380/files/Invoice_30824441.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/909380/files/Lithium%20phosphosulfide%20electrolytes%20for%20solid-state%20batteries%3A%20Part%20I.pdf
909 C O |o oai:juser.fz-juelich.de:909380
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180280
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156244
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161141
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)180631
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)161208
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)172733
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)188297
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)144426
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)180432
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 11
|6 P:(DE-Juel1)156123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)157700
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FUNCT MATER LETT : 2021
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-16
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-16
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21