000909556 001__ 909556
000909556 005__ 20230123110646.0
000909556 0247_ $$2doi$$a10.1021/acs.nanolett.2c01510
000909556 0247_ $$2ISSN$$a1530-6984
000909556 0247_ $$2ISSN$$a1530-6992
000909556 0247_ $$2Handle$$a2128/32012
000909556 0247_ $$2pmid$$a36041122
000909556 0247_ $$2WOS$$aWOS:000855232100001
000909556 037__ $$aFZJ-2022-03245
000909556 041__ $$aEnglish
000909556 082__ $$a660
000909556 1001_ $$0P:(DE-Juel1)180451$$aLu, Yan$$b0$$eCorresponding author
000909556 245__ $$aCounting Point Defects at Nanoparticle Surfaces by Electron Holography
000909556 260__ $$aWashington, DC$$bACS Publ.$$c2022
000909556 3367_ $$2DRIVER$$aarticle
000909556 3367_ $$2DataCite$$aOutput Types/Journal article
000909556 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1665141459_16109
000909556 3367_ $$2BibTeX$$aARTICLE
000909556 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909556 3367_ $$00$$2EndNote$$aJournal Article
000909556 520__ $$aMetal oxide nanoparticles exhibit outstanding catalytic properties, believed to be related to the presence of oxygen vacancies at the particle’s surface. However, little quantitative information is known about concentrations of point defects inside and at surfaces of these nanoparticles, due to the challenges in achieving an atomically resolved experimental access. By employing off-axis electron holography, we demonstrate, using MgO nanoparticles as an example, a methodology that discriminates between mobile charge induced by electron beam irradiation and immobile charge associated with deep traps induced by point defects as well as distinguishes between bulk and surface point defects. Counting the immobile charge provides a quantification of the concentration of F2+ centers induced by oxygen vacancies at the MgO nanocube surfaces.
000909556 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000909556 536__ $$0G:(EU-Grant)606988$$aSIMDALEE2 - Sources, Interaction with Matter, Detection and Analysis ofLow Energy Electrons 2 (606988)$$c606988$$fFP7-PEOPLE-2013-ITN$$x1
000909556 536__ $$0G:(EU-Grant)766970$$aQ-SORT - QUANTUM SORTER (766970)$$c766970$$fH2020-FETOPEN-1-2016-2017$$x2
000909556 588__ $$aDataset connected to DataCite
000909556 7001_ $$0P:(DE-Juel1)165965$$aZheng, Fengshan$$b1$$eCorresponding author
000909556 7001_ $$0P:(DE-Juel1)173944$$aLan, Qianqian$$b2
000909556 7001_ $$0P:(DE-Juel1)143949$$aSchnedler, Michael$$b3$$eCorresponding author
000909556 7001_ $$0P:(DE-Juel1)130627$$aEbert, Philipp$$b4
000909556 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b5
000909556 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.2c01510$$gp. acs.nanolett.2c01510$$n17$$p6936–6941$$tNano letters$$v22$$x1530-6984$$y2022
000909556 8564_ $$uhttps://juser.fz-juelich.de/record/909556/files/acs.nanolett.2c01510-2.pdf
000909556 8564_ $$uhttps://juser.fz-juelich.de/record/909556/files/Counting%20point%2C%20Preprint_NanoLett22_6936.pdf$$yPublished on 2022-08-30. Available in OpenAccess from 2023-08-30.
000909556 909CO $$ooai:juser.fz-juelich.de:909556$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000909556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180451$$aForschungszentrum Jülich$$b0$$kFZJ
000909556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165965$$aForschungszentrum Jülich$$b1$$kFZJ
000909556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173944$$aForschungszentrum Jülich$$b2$$kFZJ
000909556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143949$$aForschungszentrum Jülich$$b3$$kFZJ
000909556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130627$$aForschungszentrum Jülich$$b4$$kFZJ
000909556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b5$$kFZJ
000909556 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000909556 9141_ $$y2022
000909556 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000909556 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000909556 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000909556 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-30
000909556 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-30
000909556 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-30
000909556 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-30
000909556 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-30
000909556 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2021$$d2022-11-30
000909556 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-30
000909556 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-30
000909556 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2021$$d2022-11-30
000909556 920__ $$lyes
000909556 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000909556 980__ $$ajournal
000909556 980__ $$aVDB
000909556 980__ $$aUNRESTRICTED
000909556 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000909556 9801_ $$aFullTexts