001     909556
005     20230123110646.0
024 7 _ |a 10.1021/acs.nanolett.2c01510
|2 doi
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a 1530-6992
|2 ISSN
024 7 _ |a 2128/32012
|2 Handle
024 7 _ |a 36041122
|2 pmid
024 7 _ |a WOS:000855232100001
|2 WOS
037 _ _ |a FZJ-2022-03245
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Lu, Yan
|0 P:(DE-Juel1)180451
|b 0
|e Corresponding author
245 _ _ |a Counting Point Defects at Nanoparticle Surfaces by Electron Holography
260 _ _ |a Washington, DC
|c 2022
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1665141459_16109
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Metal oxide nanoparticles exhibit outstanding catalytic properties, believed to be related to the presence of oxygen vacancies at the particle’s surface. However, little quantitative information is known about concentrations of point defects inside and at surfaces of these nanoparticles, due to the challenges in achieving an atomically resolved experimental access. By employing off-axis electron holography, we demonstrate, using MgO nanoparticles as an example, a methodology that discriminates between mobile charge induced by electron beam irradiation and immobile charge associated with deep traps induced by point defects as well as distinguishes between bulk and surface point defects. Counting the immobile charge provides a quantification of the concentration of F2+ centers induced by oxygen vacancies at the MgO nanocube surfaces.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
536 _ _ |a SIMDALEE2 - Sources, Interaction with Matter, Detection and Analysis ofLow Energy Electrons 2 (606988)
|0 G:(EU-Grant)606988
|c 606988
|f FP7-PEOPLE-2013-ITN
|x 1
536 _ _ |a Q-SORT - QUANTUM SORTER (766970)
|0 G:(EU-Grant)766970
|c 766970
|f H2020-FETOPEN-1-2016-2017
|x 2
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Zheng, Fengshan
|0 P:(DE-Juel1)165965
|b 1
|e Corresponding author
700 1 _ |a Lan, Qianqian
|0 P:(DE-Juel1)173944
|b 2
700 1 _ |a Schnedler, Michael
|0 P:(DE-Juel1)143949
|b 3
|e Corresponding author
700 1 _ |a Ebert, Philipp
|0 P:(DE-Juel1)130627
|b 4
700 1 _ |a Dunin-Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 5
773 _ _ |a 10.1021/acs.nanolett.2c01510
|g p. acs.nanolett.2c01510
|0 PERI:(DE-600)2048866-X
|n 17
|p 6936–6941
|t Nano letters
|v 22
|y 2022
|x 1530-6984
856 4 _ |u https://juser.fz-juelich.de/record/909556/files/acs.nanolett.2c01510-2.pdf
856 4 _ |y Published on 2022-08-30. Available in OpenAccess from 2023-08-30.
|u https://juser.fz-juelich.de/record/909556/files/Counting%20point%2C%20Preprint_NanoLett22_6936.pdf
909 C O |o oai:juser.fz-juelich.de:909556
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180451
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165965
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)173944
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)143949
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130627
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO LETT : 2021
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-30
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NANO LETT : 2021
|d 2022-11-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21