000909792 001__ 909792
000909792 005__ 20250129092357.0
000909792 020__ $$a78-1-6654-8062-8
000909792 0247_ $$2doi$$a10.1109/WOLTE55422.2022.9882781
000909792 0247_ $$2WOS$$aWOS:000861197500014
000909792 037__ $$aFZJ-2022-03417
000909792 1001_ $$0P:(DE-Juel1)177765$$aCabrera Galicia, Alfonso Rafael$$b0$$eCorresponding author$$ufzj
000909792 1112_ $$a2022 IEEE 15th Workshop on Low Temperature Electronics (WOLTE)$$cMatera$$d2022-06-06 - 2022-06-09$$wItaly
000909792 245__ $$aTowards the Development of Cryogenic Integrated Power Management Units
000909792 260__ $$bIEEE$$c2022
000909792 300__ $$a1 - 4
000909792 3367_ $$2ORCID$$aCONFERENCE_PAPER
000909792 3367_ $$033$$2EndNote$$aConference Paper
000909792 3367_ $$2BibTeX$$aINPROCEEDINGS
000909792 3367_ $$2DRIVER$$aconferenceObject
000909792 3367_ $$2DataCite$$aOutput Types/Conference Paper
000909792 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1663734757_5788
000909792 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000909792 520__ $$aIntegrated Circuits (ICs) operating at cryogenic temperatures are expected to allow the development of scalable quantum computing systems consisting of thousands of physical quantum bits (qubits). However, since these ICs require undistorted power supply lines for optimal performance, the development of Power Management Units (PMUs) capable of cryogenic operation is also needed for the quantum computing systems scalability. To develop such PMUs, it is necessary to understand the cryogenic electrical behavior of its components. Therefore, this brief present the measurement results obtained from an exploratory cryogenic DC characterization of some of the passive and active components belonging to a commercial 22nm FDSOI IC technology.
000909792 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000909792 588__ $$aDataset connected to CrossRef Conference
000909792 65027 $$0V:(DE-MLZ)SciArea-220$$2V:(DE-HGF)$$aInstrument and Method Development$$x0
000909792 65017 $$0V:(DE-MLZ)GC-1601-2016$$2V:(DE-HGF)$$aEngineering, Industrial Materials and Processing$$x0
000909792 7001_ $$0P:(DE-Juel1)176328$$aAshok, Arun$$b1
000909792 7001_ $$0P:(DE-Juel1)171680$$aVliex, P.$$b2
000909792 7001_ $$0P:(DE-Juel1)167475$$aDegenhardt, C.$$b3
000909792 7001_ $$0P:(DE-Juel1)156521$$aKruth, A.$$b4
000909792 7001_ $$0P:(DE-Juel1)174165$$aArtanov, A.$$b5
000909792 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, S.$$b6
000909792 773__ $$a10.1109/WOLTE55422.2022.9882781
000909792 8564_ $$uhttps://juser.fz-juelich.de/record/909792/files/Towards_the_Development_of_Cryogenic_Integrated_Power_Management_Units.pdf$$yRestricted
000909792 909CO $$ooai:juser.fz-juelich.de:909792$$pVDB
000909792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177765$$aForschungszentrum Jülich$$b0$$kFZJ
000909792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176328$$aForschungszentrum Jülich$$b1$$kFZJ
000909792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171680$$aForschungszentrum Jülich$$b2$$kFZJ
000909792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167475$$aForschungszentrum Jülich$$b3$$kFZJ
000909792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156521$$aForschungszentrum Jülich$$b4$$kFZJ
000909792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174165$$aForschungszentrum Jülich$$b5$$kFZJ
000909792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b6$$kFZJ
000909792 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000909792 9141_ $$y2022
000909792 920__ $$lyes
000909792 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000909792 980__ $$acontrib
000909792 980__ $$aVDB
000909792 980__ $$acontb
000909792 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000909792 980__ $$aUNRESTRICTED
000909792 981__ $$aI:(DE-Juel1)PGI-4-20110106