000910372 001__ 910372
000910372 005__ 20221026130455.0
000910372 0247_ $$2Handle$$a2128/32112
000910372 037__ $$aFZJ-2022-03783
000910372 1001_ $$0P:(DE-Juel1)164828$$aLi, Jingwei$$b0$$eCorresponding author
000910372 1112_ $$aINM & IBI Retreat 2022 "Molecular neuroscience meets brain function"$$cJülich$$d2022-10-18 - 2022-10-19$$wGermany
000910372 245__ $$aCross-ethnicity/race generalization failure of RSFC-based behavioral prediction and potential consequences
000910372 260__ $$c2022
000910372 3367_ $$033$$2EndNote$$aConference Paper
000910372 3367_ $$2BibTeX$$aINPROCEEDINGS
000910372 3367_ $$2DRIVER$$aconferenceObject
000910372 3367_ $$2ORCID$$aCONFERENCE_POSTER
000910372 3367_ $$2DataCite$$aOutput Types/Conference Poster
000910372 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1666697818_31446$$xOther
000910372 520__ $$aMachine learning (ML) plays an important role in precision medicine. However, algorithmic biases that favor majority populations pose a key challenge to ML applications (Chouldechova 2018; Martin 2019; Obermeyer 2019). In neuroimaging, there is growing interest in the prediction of behavioral phenotypes based on resting-state functional connectivity (RSFC; Finn 2015, 2021; Greene 2018). But prediction biases/unfairness in this context were not assessed in the literature. Especially, predictive models were typically built by capitalizing on large cohorts with mixed ethnic group, in which the proportions of certain ethnical groups, e.g. African Americans (AA), are limited. Whether the models perform equally well across different ethnic groups was unclear. By using two large-scale neuroimaging datasets from the United States, we compared the prediction accuracy between AA and white Americans (WA) when ML models were trained on different composition of ethnic groups. We observed larger prediction errors in AA than WA for most behavioral measures, which was only limitedly affected by the composition of training population. We also investigated potential downstream consequences of biased predictions of behavioral phenotypes if they were used uncritically.
000910372 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000910372 7001_ $$0P:(DE-HGF)0$$aBzdok, Danilo$$b1
000910372 7001_ $$0P:(DE-HGF)0$$aTam, Angela$$b2
000910372 7001_ $$0P:(DE-HGF)0$$aOoi, Leon Qi Rong$$b3
000910372 7001_ $$0P:(DE-HGF)0$$aHolmes, Avram$$b4
000910372 7001_ $$0P:(DE-HGF)0$$aGe, Tian$$b5
000910372 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh$$b6
000910372 7001_ $$0P:(DE-HGF)0$$aJabbi, Mbemba$$b7
000910372 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b8
000910372 7001_ $$0P:(DE-HGF)0$$aYeo, Thomas$$b9
000910372 7001_ $$0P:(DE-Juel1)161225$$aGENON, Sarah$$b10
000910372 8564_ $$uhttps://juser.fz-juelich.de/record/910372/files/INM%20IBI%20Retreat%2068_Jingwei.pdf$$yOpenAccess
000910372 909CO $$ooai:juser.fz-juelich.de:910372$$popenaire$$popen_access$$pVDB$$pdriver
000910372 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164828$$aForschungszentrum Jülich$$b0$$kFZJ
000910372 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)164828$$a HHU Düsseldorf$$b0
000910372 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b6$$kFZJ
000910372 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172843$$a HHU Düsseldorf$$b6
000910372 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b8$$kFZJ
000910372 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$aHHU Düsseldorf$$b8
000910372 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161225$$aForschungszentrum Jülich$$b10$$kFZJ
000910372 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)161225$$a HHU Düsseldorf$$b10
000910372 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000910372 9141_ $$y2022
000910372 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910372 920__ $$lyes
000910372 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000910372 9801_ $$aFullTexts
000910372 980__ $$aposter
000910372 980__ $$aVDB
000910372 980__ $$aUNRESTRICTED
000910372 980__ $$aI:(DE-Juel1)INM-7-20090406