000910468 001__ 910468
000910468 005__ 20250129092405.0
000910468 0247_ $$2doi$$a10.3389/fnins.2022.958343
000910468 0247_ $$2ISSN$$a1662-453X
000910468 0247_ $$2ISSN$$a1662-4548
000910468 0247_ $$2Handle$$a2128/32124
000910468 0247_ $$2pmid$$a36003958
000910468 0247_ $$2WOS$$aWOS:000843313800001
000910468 037__ $$aFZJ-2022-03851
000910468 082__ $$a610
000910468 1001_ $$0P:(DE-Juel1)178650$$aKleijnen, Robert$$b0$$eCorresponding author$$ufzj
000910468 245__ $$aVerification of a neuromorphic computing network simulator using experimental traffic data
000910468 260__ $$aLausanne$$bFrontiers Research Foundation$$c2022
000910468 3367_ $$2DRIVER$$aarticle
000910468 3367_ $$2DataCite$$aOutput Types/Journal article
000910468 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1676461133_10242
000910468 3367_ $$2BibTeX$$aARTICLE
000910468 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910468 3367_ $$00$$2EndNote$$aJournal Article
000910468 520__ $$aSimulations are a powerful tool to explore the design space of hardware systems, offering the flexibility to analyze different designs by simply changing parameters within the simulator setup. A precondition for the effectiveness of this methodology is that the simulation results accurately represent the real system. In a previous study, we introduced a simulator specifically designed to estimate the network load and latency to be observed on the connections in neuromorphic computing (NC) systems. The simulator was shown to be especially valuable in the case of large scale heterogeneous neural networks (NNs). In this work, we compare the network load measured on a SpiNNaker board running a NN in different configurations reported in the literature to the results obtained with our simulator running the same configurations. The simulated network loads show minor differences from the values reported in the ascribed publication but fall within the margin of error, considering the generation of the test case NN based on statistics that introduced variations. Having shown that the network simulator provides representative results for this type of —biological plausible—heterogeneous NNs, it also paves the way to further use of the simulator for more complex network analyses.
000910468 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000910468 536__ $$0G:(DE-HGF)SO-092$$aACA - Advanced Computing Architectures (SO-092)$$cSO-092$$x1
000910468 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910468 7001_ $$0P:(DE-Juel1)156319$$aRobens, Markus$$b1$$ufzj
000910468 7001_ $$0P:(DE-Juel1)133935$$aSchiek, Michael$$b2$$ufzj
000910468 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b3$$ufzj
000910468 773__ $$0PERI:(DE-600)2411902-7$$a10.3389/fnins.2022.958343$$gVol. 16, p. 958343$$p958343$$tFrontiers in neuroscience$$v16$$x1662-453X$$y2022
000910468 8564_ $$uhttps://juser.fz-juelich.de/record/910468/files/fnins-16-958343.pdf$$yOpenAccess
000910468 8767_ $$d2022-12-27$$eAPC$$jDeposit$$z2507,50 USD
000910468 909CO $$ooai:juser.fz-juelich.de:910468$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000910468 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178650$$aForschungszentrum Jülich$$b0$$kFZJ
000910468 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156319$$aForschungszentrum Jülich$$b1$$kFZJ
000910468 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133935$$aForschungszentrum Jülich$$b2$$kFZJ
000910468 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b3$$kFZJ
000910468 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000910468 9141_ $$y2022
000910468 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000910468 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
000910468 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000910468 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910468 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000910468 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000910468 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000910468 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROSCI-SWITZ : 2021$$d2022-11-09
000910468 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09
000910468 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09
000910468 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-11T13:19:45Z
000910468 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-11T13:19:45Z
000910468 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-11T13:19:45Z
000910468 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09
000910468 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09
000910468 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-09
000910468 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-09
000910468 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFRONT NEUROSCI-SWITZ : 2021$$d2022-11-09
000910468 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000910468 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000910468 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000910468 920__ $$lno
000910468 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000910468 9801_ $$aAPC
000910468 9801_ $$aFullTexts
000910468 980__ $$ajournal
000910468 980__ $$aVDB
000910468 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000910468 980__ $$aAPC
000910468 980__ $$aUNRESTRICTED
000910468 981__ $$aI:(DE-Juel1)PGI-4-20110106