001     910468
005     20250129092405.0
024 7 _ |a 10.3389/fnins.2022.958343
|2 doi
024 7 _ |a 1662-453X
|2 ISSN
024 7 _ |a 1662-4548
|2 ISSN
024 7 _ |a 2128/32124
|2 Handle
024 7 _ |a 36003958
|2 pmid
024 7 _ |a WOS:000843313800001
|2 WOS
037 _ _ |a FZJ-2022-03851
082 _ _ |a 610
100 1 _ |a Kleijnen, Robert
|0 P:(DE-Juel1)178650
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Verification of a neuromorphic computing network simulator using experimental traffic data
260 _ _ |a Lausanne
|c 2022
|b Frontiers Research Foundation
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1676461133_10242
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Simulations are a powerful tool to explore the design space of hardware systems, offering the flexibility to analyze different designs by simply changing parameters within the simulator setup. A precondition for the effectiveness of this methodology is that the simulation results accurately represent the real system. In a previous study, we introduced a simulator specifically designed to estimate the network load and latency to be observed on the connections in neuromorphic computing (NC) systems. The simulator was shown to be especially valuable in the case of large scale heterogeneous neural networks (NNs). In this work, we compare the network load measured on a SpiNNaker board running a NN in different configurations reported in the literature to the results obtained with our simulator running the same configurations. The simulated network loads show minor differences from the values reported in the ascribed publication but fall within the margin of error, considering the generation of the test case NN based on statistics that introduced variations. Having shown that the network simulator provides representative results for this type of —biological plausible—heterogeneous NNs, it also paves the way to further use of the simulator for more complex network analyses.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
536 _ _ |a ACA - Advanced Computing Architectures (SO-092)
|0 G:(DE-HGF)SO-092
|c SO-092
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Robens, Markus
|0 P:(DE-Juel1)156319
|b 1
|u fzj
700 1 _ |a Schiek, Michael
|0 P:(DE-Juel1)133935
|b 2
|u fzj
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 3
|u fzj
773 _ _ |a 10.3389/fnins.2022.958343
|g Vol. 16, p. 958343
|0 PERI:(DE-600)2411902-7
|p 958343
|t Frontiers in neuroscience
|v 16
|y 2022
|x 1662-453X
856 4 _ |u https://juser.fz-juelich.de/record/910468/files/fnins-16-958343.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:910468
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178650
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156319
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)133935
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-05-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT NEUROSCI-SWITZ : 2021
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-11T13:19:45Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-11T13:19:45Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-05-11T13:19:45Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-09
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b FRONT NEUROSCI-SWITZ : 2021
|d 2022-11-09
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21