001     910704
005     20230123110716.0
024 7 _ |a 10.1038/s42003-022-03185-3
|2 doi
024 7 _ |a 2128/32285
|2 Handle
024 7 _ |a 35332230
|2 pmid
024 7 _ |a WOS:000780299500001
|2 WOS
037 _ _ |a FZJ-2022-04075
082 _ _ |a 570
100 1 _ |a Mantwill, Maron
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Brain connectivity fingerprinting and behavioural prediction rest on distinct functional systems of the human connectome
260 _ _ |a London
|c 2022
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1667393706_29713
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The prediction of inter-individual behavioural differences from neuroimaging data is a rapidly evolving field of research focusing on individualised methods to describe human brain organisation on the single-subject level. One method that harnesses such individual signatures is functional connectome fingerprinting, which can reliably identify individuals from large study populations. However, the precise relationship between functional signatures underlying fingerprinting and behavioural prediction remains unclear. Expanding on previous reports, here we systematically investigate the link between discrimination and prediction on different levels of brain network organisation (individual connections, network interactions, topographical organisation, and connection variability). Our analysis revealed a substantial divergence between discriminatory and predictive connectivity signatures on all levels of network organisation. Across different brain parcellations, thresholds, and prediction algorithms, we find discriminatory connections in higher-order multimodal association cortices, while neural correlates of behaviour display more variable distributions. Furthermore, we find the standard deviation of connections between participants to be significantly higher in fingerprinting than in prediction, making inter-individual connection variability a possible separating marker. These results demonstrate that participant identification and behavioural prediction involve highly distinct functional systems of the human connectome. The present study thus calls into question the direct functional relevance of connectome fingerprints.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Gell, Martin
|0 P:(DE-Juel1)185960
|b 1
700 1 _ |a Krohn, Stephan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Finke, Carsten
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1038/s42003-022-03185-3
|g Vol. 5, no. 1, p. 261
|0 PERI:(DE-600)2919698-X
|n 1
|p 261
|t Communications biology
|v 5
|y 2022
|x 2399-3642
856 4 _ |u https://juser.fz-juelich.de/record/910704/files/s42003-022-03185-3-2.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:910704
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Charité-Universitätsmedizin Berlin, Department of Neurology
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)185960
910 1 _ |a RWTH Aachen University
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)185960
910 1 _ |a Humboldt-Universität zu Berlin
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)185960
910 1 _ |a Humboldt-Universität zu Berlin
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Humboldt-Universität zu Berlin
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-06-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-06-15
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-06-15
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-06-15
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-06-15
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMMUN BIOL : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-13T14:52:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-13T14:52:02Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-10-13T14:52:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2022-11-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b COMMUN BIOL : 2021
|d 2022-11-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21