Journal Article FZJ-2022-04075

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Brain connectivity fingerprinting and behavioural prediction rest on distinct functional systems of the human connectome

 ;  ;  ;

2022
Springer Nature London

Communications biology 5(1), 261 () [10.1038/s42003-022-03185-3]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: The prediction of inter-individual behavioural differences from neuroimaging data is a rapidly evolving field of research focusing on individualised methods to describe human brain organisation on the single-subject level. One method that harnesses such individual signatures is functional connectome fingerprinting, which can reliably identify individuals from large study populations. However, the precise relationship between functional signatures underlying fingerprinting and behavioural prediction remains unclear. Expanding on previous reports, here we systematically investigate the link between discrimination and prediction on different levels of brain network organisation (individual connections, network interactions, topographical organisation, and connection variability). Our analysis revealed a substantial divergence between discriminatory and predictive connectivity signatures on all levels of network organisation. Across different brain parcellations, thresholds, and prediction algorithms, we find discriminatory connections in higher-order multimodal association cortices, while neural correlates of behaviour display more variable distributions. Furthermore, we find the standard deviation of connections between participants to be significantly higher in fingerprinting than in prediction, making inter-individual connection variability a possible separating marker. These results demonstrate that participant identification and behavioural prediction involve highly distinct functional systems of the human connectome. The present study thus calls into question the direct functional relevance of connectome fingerprints.

Classification:

Contributing Institute(s):
  1. Gehirn & Verhalten (INM-7)
Research Program(s):
  1. 5252 - Brain Dysfunction and Plasticity (POF4-525) (POF4-525)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-7
Workflow collections > Public records
Publications database
Open Access

 Record created 2022-11-02, last modified 2023-01-23


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)