TY - JOUR
AU - Garcés, Pilar
AU - Baumeister, Sarah
AU - Mason, Luke
AU - Chatham, Christopher H.
AU - Holiga, Stefan
AU - Dukart, Jürgen
AU - Jones, Emily J. H.
AU - Banaschewski, Tobias
AU - Baron-Cohen, Simon
AU - Bölte, Sven
AU - Buitelaar, Jan K.
AU - Durston, Sarah
AU - Oranje, Bob
AU - Persico, Antonio M.
AU - Beckmann, Christian F.
AU - Bougeron, Thomas
AU - Dell’Acqua, Flavio
AU - Ecker, Christine
AU - Moessnang, Carolin
AU - Charman, Tony
AU - Tillmann, Julian
AU - Murphy, Declan G. M.
AU - Johnson, Mark
AU - Loth, Eva
AU - Brandeis, Daniel
AU - Hipp, Joerg F.
AU - Ahmad, Jumana
AU - Ambrosino, Sara
AU - Auyeung, Bonnie
AU - Banaschewski, Tobias
AU - Baron-Cohen, Simon
AU - Baumeister, Sarah
AU - Beckmann, Christian F.
AU - Bölte, Sven
AU - Bourgeron, Thomas
AU - Bours, Carsten
AU - Brammer, Michael
AU - Brandeis, Daniel
AU - Brogna, Claudia
AU - de Bruijn, Yvette
AU - Buitelaar, Jan K.
AU - Chakrabarti, Bhismadev
AU - Charman, Tony
AU - Cornelissen, Ineke
AU - Crawley, Daisy
AU - Dell’Acqua, Flavio
AU - Dumas, Guillaume
AU - Durston, Sarah
AU - Ecker, Christine
AU - Faulkner, Jessica
AU - Frouin, Vincent
AU - Garcés, Pilar
AU - Goyard, David
AU - Ham, Lindsay
AU - Hayward, Hannah
AU - Hipp, Joerg
AU - Holt, Rosemary
AU - Johnson, Mark H.
AU - Jones, Emily J. H.
AU - Kundu, Prantik
AU - Lai, Meng-Chuan
AU - ardhuy, Xavier Liogier D’
AU - Lombardo, Michael V.
AU - Loth, Eva
AU - Lythgoe, David J.
AU - Mandl, René
AU - Marquand, Andre
AU - Mason, Luke
AU - Mennes, Maarten
AU - Meyer-Lindenberg, Andreas
AU - Moessnang, Carolin
AU - Mueller, Nico
AU - Murphy, Declan G. M.
AU - Oakley, Bethany
AU - O’Dwyer, Laurence
AU - Oldehinkel, Marianne
AU - Oranje, Bob
AU - Pandina, Gahan
AU - Persico, Antonio M.
AU - Ruggeri, Barbara
AU - Ruigrok, Amber
AU - Sabet, Jessica
AU - Sacco, Roberto
AU - Cáceres, Antonia San José
AU - Simonoff, Emily
AU - Spooren, Will
AU - Tillmann, Julian
AU - Toro, Roberto
AU - Tost, Heike
AU - Waldman, Jack
AU - Williams, Steve C. R.
AU - Wooldridge, Caroline
AU - Zwiers, Marcel P.
TI - Resting state EEG power spectrum and functional connectivity in autism: a cross-sectional analysis
JO - Molecular autism
VL - 13
IS - 1
SN - 2040-2392
CY - London
PB - BioMed Central
M1 - FZJ-2022-04082
SP - 22
PY - 2022
AB - BackgroundUnderstanding the development of the neuronal circuitry underlying autism spectrum disorder (ASD) is critical to shed light into its etiology and for the development of treatment options. Resting state EEG provides a window into spontaneous local and long-range neuronal synchronization and has been investigated in many ASD studies, but results are inconsistent. Unbiased investigation in large and comprehensive samples focusing on replicability is needed.MethodsWe quantified resting state EEG alpha peak metrics, power spectrum (PS, 2–32 Hz) and functional connectivity (FC) in 411 children, adolescents and adults (n = 212 ASD, n = 199 neurotypicals [NT], all with IQ > 75). We performed analyses in source-space using individual head models derived from the participants’ MRIs. We tested for differences in mean and variance between the ASD and NT groups for both PS and FC using linear mixed effects models accounting for age, sex, IQ and site effects. Then, we used machine learning to assess whether a multivariate combination of EEG features could better separate ASD and NT participants. All analyses were embedded within a train-validation approach (70%–30% split).ResultsIn the training dataset, we found an interaction between age and group for the reactivity to eye opening (p = .042 uncorrected), and a significant but weak multivariate ASD vs. NT classification performance for PS and FC (sensitivity 0.52–0.62, specificity 0.59–0.73). None of these findings replicated significantly in the validation dataset, although the effect size in the validation dataset overlapped with the prediction interval from the training dataset.LimitationsThe statistical power to detect weak effects—of the magnitude of those found in the training dataset—in the validation dataset is small, and we cannot fully conclude on the reproducibility of the training dataset’s effects.ConclusionsThis suggests that PS and FC values in ASD and NT have a strong overlap, and that differences between both groups (in both mean and variance) have, at best, a small effect size. Larger studies would be needed to investigate and replicate such potential effects.
LB - PUB:(DE-HGF)16
C6 - 35585637
UR - <Go to ISI:>//WOS:000797539700002
DO - DOI:10.1186/s13229-022-00500-x
UR - https://juser.fz-juelich.de/record/910711
ER -