001     910711
005     20230123110716.0
024 7 _ |a 10.1186/s13229-022-00500-x
|2 doi
024 7 _ |a 2128/32326
|2 Handle
024 7 _ |a 35585637
|2 pmid
024 7 _ |a WOS:000797539700002
|2 WOS
037 _ _ |a FZJ-2022-04082
082 _ _ |a 610
100 1 _ |a Garcés, Pilar
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Resting state EEG power spectrum and functional connectivity in autism: a cross-sectional analysis
260 _ _ |a London
|c 2022
|b BioMed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1667472020_9517
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a BackgroundUnderstanding the development of the neuronal circuitry underlying autism spectrum disorder (ASD) is critical to shed light into its etiology and for the development of treatment options. Resting state EEG provides a window into spontaneous local and long-range neuronal synchronization and has been investigated in many ASD studies, but results are inconsistent. Unbiased investigation in large and comprehensive samples focusing on replicability is needed.MethodsWe quantified resting state EEG alpha peak metrics, power spectrum (PS, 2–32 Hz) and functional connectivity (FC) in 411 children, adolescents and adults (n = 212 ASD, n = 199 neurotypicals [NT], all with IQ > 75). We performed analyses in source-space using individual head models derived from the participants’ MRIs. We tested for differences in mean and variance between the ASD and NT groups for both PS and FC using linear mixed effects models accounting for age, sex, IQ and site effects. Then, we used machine learning to assess whether a multivariate combination of EEG features could better separate ASD and NT participants. All analyses were embedded within a train-validation approach (70%–30% split).ResultsIn the training dataset, we found an interaction between age and group for the reactivity to eye opening (p = .042 uncorrected), and a significant but weak multivariate ASD vs. NT classification performance for PS and FC (sensitivity 0.52–0.62, specificity 0.59–0.73). None of these findings replicated significantly in the validation dataset, although the effect size in the validation dataset overlapped with the prediction interval from the training dataset.LimitationsThe statistical power to detect weak effects—of the magnitude of those found in the training dataset—in the validation dataset is small, and we cannot fully conclude on the reproducibility of the training dataset’s effects.ConclusionsThis suggests that PS and FC values in ASD and NT have a strong overlap, and that differences between both groups (in both mean and variance) have, at best, a small effect size. Larger studies would be needed to investigate and replicate such potential effects.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Baumeister, Sarah
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Mason, Luke
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Chatham, Christopher H.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Holiga, Stefan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Dukart, Jürgen
|0 P:(DE-Juel1)177727
|b 5
700 1 _ |a Jones, Emily J. H.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Banaschewski, Tobias
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Baron-Cohen, Simon
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Bölte, Sven
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Buitelaar, Jan K.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Durston, Sarah
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Oranje, Bob
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Persico, Antonio M.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Beckmann, Christian F.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Bougeron, Thomas
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Dell’Acqua, Flavio
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Ecker, Christine
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Moessnang, Carolin
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Charman, Tony
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Tillmann, Julian
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Murphy, Declan G. M.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Johnson, Mark
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Loth, Eva
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Brandeis, Daniel
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Hipp, Joerg F.
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Ahmad, Jumana
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Ambrosino, Sara
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Auyeung, Bonnie
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Banaschewski, Tobias
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Baron-Cohen, Simon
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Baumeister, Sarah
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Beckmann, Christian F.
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Bölte, Sven
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Bourgeron, Thomas
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Bours, Carsten
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Brammer, Michael
|0 P:(DE-HGF)0
|b 36
700 1 _ |a Brandeis, Daniel
|0 P:(DE-HGF)0
|b 37
700 1 _ |a Brogna, Claudia
|0 P:(DE-HGF)0
|b 38
700 1 _ |a de Bruijn, Yvette
|0 P:(DE-HGF)0
|b 39
700 1 _ |a Buitelaar, Jan K.
|0 P:(DE-HGF)0
|b 40
700 1 _ |a Chakrabarti, Bhismadev
|0 P:(DE-HGF)0
|b 41
700 1 _ |a Charman, Tony
|0 P:(DE-HGF)0
|b 42
700 1 _ |a Cornelissen, Ineke
|0 P:(DE-HGF)0
|b 43
700 1 _ |a Crawley, Daisy
|0 P:(DE-HGF)0
|b 44
700 1 _ |a Dell’Acqua, Flavio
|0 P:(DE-HGF)0
|b 45
700 1 _ |a Dumas, Guillaume
|0 P:(DE-HGF)0
|b 46
700 1 _ |a Durston, Sarah
|0 P:(DE-HGF)0
|b 47
700 1 _ |a Ecker, Christine
|0 P:(DE-HGF)0
|b 48
700 1 _ |a Faulkner, Jessica
|0 P:(DE-HGF)0
|b 49
700 1 _ |a Frouin, Vincent
|0 P:(DE-HGF)0
|b 50
700 1 _ |a Garcés, Pilar
|0 P:(DE-HGF)0
|b 51
700 1 _ |a Goyard, David
|0 P:(DE-HGF)0
|b 52
700 1 _ |a Ham, Lindsay
|0 P:(DE-HGF)0
|b 53
700 1 _ |a Hayward, Hannah
|0 P:(DE-HGF)0
|b 54
700 1 _ |a Hipp, Joerg
|0 P:(DE-HGF)0
|b 55
700 1 _ |a Holt, Rosemary
|0 P:(DE-HGF)0
|b 56
700 1 _ |a Johnson, Mark H.
|0 P:(DE-HGF)0
|b 57
700 1 _ |a Jones, Emily J. H.
|0 P:(DE-HGF)0
|b 58
700 1 _ |a Kundu, Prantik
|0 P:(DE-HGF)0
|b 59
700 1 _ |a Lai, Meng-Chuan
|0 P:(DE-HGF)0
|b 60
700 1 _ |a ardhuy, Xavier Liogier D’
|0 P:(DE-HGF)0
|b 61
700 1 _ |a Lombardo, Michael V.
|0 P:(DE-HGF)0
|b 62
700 1 _ |a Loth, Eva
|0 P:(DE-HGF)0
|b 63
700 1 _ |a Lythgoe, David J.
|0 P:(DE-HGF)0
|b 64
700 1 _ |a Mandl, René
|0 P:(DE-HGF)0
|b 65
700 1 _ |a Marquand, Andre
|0 P:(DE-HGF)0
|b 66
700 1 _ |a Mason, Luke
|0 P:(DE-HGF)0
|b 67
700 1 _ |a Mennes, Maarten
|0 P:(DE-HGF)0
|b 68
700 1 _ |a Meyer-Lindenberg, Andreas
|0 P:(DE-HGF)0
|b 69
700 1 _ |a Moessnang, Carolin
|0 P:(DE-HGF)0
|b 70
700 1 _ |a Mueller, Nico
|0 P:(DE-HGF)0
|b 71
700 1 _ |a Murphy, Declan G. M.
|0 P:(DE-HGF)0
|b 72
700 1 _ |a Oakley, Bethany
|0 P:(DE-HGF)0
|b 73
700 1 _ |a O’Dwyer, Laurence
|0 P:(DE-HGF)0
|b 74
700 1 _ |a Oldehinkel, Marianne
|0 P:(DE-HGF)0
|b 75
700 1 _ |a Oranje, Bob
|0 P:(DE-HGF)0
|b 76
700 1 _ |a Pandina, Gahan
|0 P:(DE-HGF)0
|b 77
700 1 _ |a Persico, Antonio M.
|0 P:(DE-HGF)0
|b 78
700 1 _ |a Ruggeri, Barbara
|0 P:(DE-HGF)0
|b 79
700 1 _ |a Ruigrok, Amber
|0 P:(DE-HGF)0
|b 80
700 1 _ |a Sabet, Jessica
|0 P:(DE-HGF)0
|b 81
700 1 _ |a Sacco, Roberto
|0 P:(DE-HGF)0
|b 82
700 1 _ |a Cáceres, Antonia San José
|0 P:(DE-HGF)0
|b 83
700 1 _ |a Simonoff, Emily
|0 P:(DE-HGF)0
|b 84
700 1 _ |a Spooren, Will
|0 P:(DE-HGF)0
|b 85
700 1 _ |a Tillmann, Julian
|0 P:(DE-HGF)0
|b 86
700 1 _ |a Toro, Roberto
|0 P:(DE-HGF)0
|b 87
700 1 _ |a Tost, Heike
|0 P:(DE-HGF)0
|b 88
700 1 _ |a Waldman, Jack
|0 P:(DE-HGF)0
|b 89
700 1 _ |a Williams, Steve C. R.
|0 P:(DE-HGF)0
|b 90
700 1 _ |a Wooldridge, Caroline
|0 P:(DE-HGF)0
|b 91
700 1 _ |a Zwiers, Marcel P.
|0 P:(DE-HGF)0
|b 92
773 _ _ |a 10.1186/s13229-022-00500-x
|g Vol. 13, no. 1, p. 22
|0 PERI:(DE-600)2540930-X
|n 1
|p 22
|t Molecular autism
|v 13
|y 2022
|x 2040-2392
856 4 _ |u https://juser.fz-juelich.de/record/910711/files/s13229-022-00500-x.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:910711
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)177727
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-Juel1)177727
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOL AUTISM : 2021
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-14T16:19:56Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-14T16:19:56Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-02-14T16:19:56Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-17
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-17
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MOL AUTISM : 2021
|d 2022-11-17
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21