000911126 001__ 911126
000911126 005__ 20230123110728.0
000911126 0247_ $$2doi$$a10.1103/PhysRevResearch.4.L042022
000911126 0247_ $$2Handle$$a2128/32444
000911126 0247_ $$2WOS$$aWOS:000887229500003
000911126 037__ $$aFZJ-2022-04442
000911126 082__ $$a530
000911126 1001_ $$0P:(DE-Juel1)186680$$aSaunderson, Tom G.$$b0$$eCorresponding author
000911126 245__ $$aHidden interplay of current-induced spin and orbital torques in bulk Fe 3 GeTe 2
000911126 260__ $$aCollege Park, MD$$bAPS$$c2022
000911126 3367_ $$2DRIVER$$aarticle
000911126 3367_ $$2DataCite$$aOutput Types/Journal article
000911126 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1667894170_13122
000911126 3367_ $$2BibTeX$$aARTICLE
000911126 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911126 3367_ $$00$$2EndNote$$aJournal Article
000911126 520__ $$aLow crystal symmetry of magnetic van der Waals materials naturally promotes spin-orbital complexityunachievable in common magnetic materials used for spin-orbit torque switching. Here, using first-principlesmethods, we demonstrate that an interplay of spin and orbital degrees of freedom has a profound impact onspin-orbit torques in the prototypical van der Waals ferromagnet Fe 3 GeTe 2 . While we show that bulk Fe 3 GeTe 2hosts strong “hidden” current-induced torques harvested by each of its layers, we uncover that their originalternates between the conventional spin flux torque and the so-called orbital torque as the magnetizationdirection is varied. A drastic difference in the behavior of the two types of torques results in a nontrivial evolutionof switching properties with doping. Our findings promote the design of nonequilibrium orbital properties as theguiding mechanism for crafting the properties of spin-orbit torques in layered van der Waals materials.
000911126 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000911126 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911126 7001_ $$0P:(DE-Juel1)178993$$aGo, Dongwook$$b1
000911126 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b2
000911126 7001_ $$0P:(DE-HGF)0$$aKläui, Mathias$$b3
000911126 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b4$$ufzj
000911126 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.4.L042022$$gVol. 4, no. 4, p. L042022$$n4$$pL042022$$tPhysical review research$$v4$$x2643-1564$$y2022
000911126 8564_ $$uhttps://juser.fz-juelich.de/record/911126/files/PhysRevB.106.L201402.pdf$$yOpenAccess
000911126 909CO $$ooai:juser.fz-juelich.de:911126$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000911126 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186680$$aForschungszentrum Jülich$$b0$$kFZJ
000911126 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178993$$aForschungszentrum Jülich$$b1$$kFZJ
000911126 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b2$$kFZJ
000911126 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Physics, Johannes Gutenberg University, 55099 Mainz, Germany$$b3
000911126 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Centre for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway$$b3
000911126 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b4$$kFZJ
000911126 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000911126 9141_ $$y2022
000911126 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000911126 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000911126 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-29
000911126 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-29
000911126 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-16T10:08:58Z
000911126 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-16T10:08:58Z
000911126 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-08-16T10:08:58Z
000911126 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-29
000911126 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2022-11-29
000911126 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-29
000911126 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000911126 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000911126 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000911126 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000911126 980__ $$ajournal
000911126 980__ $$aVDB
000911126 980__ $$aUNRESTRICTED
000911126 980__ $$aI:(DE-Juel1)IAS-1-20090406
000911126 980__ $$aI:(DE-Juel1)PGI-1-20110106
000911126 980__ $$aI:(DE-82)080009_20140620
000911126 980__ $$aI:(DE-82)080012_20140620
000911126 9801_ $$aFullTexts