001     911147
005     20230224084249.0
024 7 _ |a 10.1109/CLUSTER51413.2022.00073
|2 doi
024 7 _ |a 2128/32799
|2 Handle
024 7 _ |a WOS:000920273100058
|2 WOS
037 _ _ |a FZJ-2022-04463
100 1 _ |a Brank, Bine
|0 P:(DE-Juel1)174207
|b 0
|e Corresponding author
111 2 _ |a 2022 IEEE International Conference on Cluster Computing (CLUSTER)
|c Heidelberg
|d 2022-09-05 - 2022-09-08
|w Germany
245 _ _ |a Assessing the State of Autovectorization Support based on SVE
260 _ _ |c 2022
|b IEEE
300 _ _ |a 556–562
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1669378185_20905
|2 PUB:(DE-HGF)
520 _ _ |a So-called SIMD instructions, which trigger operations that process in each clock cycle a data tuple, have become widespread in modern processor architectures. In particular, processors for high-performance computing (HPC) systems rely on this additional level of parallelism to reach a high throughput of arithmetic operations. Leveraging these SIMD instructions can still be challenging for application software developers. This challenge has become simpler due to a compiler technique called auto-vectorization. In this paper, we explore the current state of auto-vectorization capabilities using state-of-the-art compilers using a recent extension of the Arm instruction set architecture, called SVE. We measure the performance gains on a recent processor architecture supporting SVE, namely the Fujitsu A64FX processor.
536 _ _ |a 5122 - Future Computing & Big Data Systems (POF4-512)
|0 G:(DE-HGF)POF4-5122
|c POF4-512
|f POF IV
|x 0
536 _ _ |a Mont-Blanc 2020 - Mont-Blanc 2020, European scalable, modular and power efficient HPC processor (779877)
|0 G:(EU-Grant)779877
|c 779877
|f H2020-ICT-2017-1
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Pleiter, Dirk
|0 P:(DE-HGF)0
|b 1
773 _ _ |a 10.1109/CLUSTER51413.2022.00073
856 4 _ |u https://juser.fz-juelich.de/record/911147/files/EAHPC_2022_SVE_Vectorisation.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:911147
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174207
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-512
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Supercomputing & Big Data Infrastructures
|9 G:(DE-HGF)POF4-5122
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21