000911182 001__ 911182
000911182 005__ 20230123110730.0
000911182 0247_ $$2doi$$a10.1109/TCI.2022.3218993
000911182 0247_ $$2Handle$$a2128/32764
000911182 0247_ $$2WOS$$aWOS:000888957200001
000911182 037__ $$aFZJ-2022-04494
000911182 041__ $$aEnglish
000911182 082__ $$a004
000911182 1001_ $$0P:(DE-Juel1)184644$$aBangun, Arya$$b0$$eCorresponding author$$ufzj
000911182 245__ $$aInverse Multislice Ptychography by Layer-wise Optimisation and Sparse Matrix Decomposition
000911182 260__ $$a[New York, NY]$$bIEEE$$c2022
000911182 3367_ $$2DRIVER$$aarticle
000911182 3367_ $$2DataCite$$aOutput Types/Journal article
000911182 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1669206904_30325
000911182 3367_ $$2BibTeX$$aARTICLE
000911182 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911182 3367_ $$00$$2EndNote$$aJournal Article
000911182 520__ $$aWe propose algorithms based on an optimisation method for inverse multislice ptychography in, e.g. electron microscopy. The multislice method is widely used to model the interaction between relativistic electrons and thick specimens. Since only the intensity of diffraction patterns can be recorded, the challenge in applying inverse multislice ptychography is to uniquely reconstruct the electrostatic potential in each slice up to some ambiguities. In this conceptual study, we show that a unique separation of atomic layers for simulated data is possible when considering a low acceleration voltage. We also introduce an adaptation for estimating the illuminating probe. For the sake of practical application, we finally present slice reconstructions using experimental 4D scanning transmission electron microscopy (STEM) data.
000911182 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000911182 536__ $$0G:(DE-HGF)VH-NG-1317$$amoreSTEM - Momentum-resolved Scanning Transmission Electron Microscopy (VH-NG-1317)$$cVH-NG-1317$$x1
000911182 536__ $$0G:(DE-HGF)ZT-I-0025$$aPtychography 4.0 - Proposal for a pilot project "Information & Data Science" (ZT-I-0025)$$cZT-I-0025$$x2
000911182 536__ $$0G:(DE-HGF)ZT-I-PF-Z5-28$$aEDARTI - Electron Diffraction Inversion by Artificial Intelligence Approaches (ZT-I-PF-Z5-28)$$cZT-I-PF-Z5-28$$x3
000911182 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911182 7001_ $$0P:(DE-HGF)0$$aMelnykyz, Oleh$$b1
000911182 7001_ $$0P:(DE-Juel1)180986$$aMärz, Benjamin$$b2
000911182 7001_ $$0P:(DE-Juel1)185768$$aDiederichs, Benedikt$$b3$$ufzj
000911182 7001_ $$0P:(DE-Juel1)174151$$aClausen, Alexander$$b4$$ufzj
000911182 7001_ $$0P:(DE-Juel1)171370$$aWeber, Dieter$$b5$$ufzj
000911182 7001_ $$0P:(DE-HGF)0$$aFilbir, Frank$$b6
000911182 7001_ $$0P:(DE-Juel1)165314$$aMuller-Caspary, Knut$$b7$$ufzj
000911182 773__ $$0PERI:(DE-600)2806107-X$$a10.1109/TCI.2022.3218993$$gp. 1 - 16$$p996 - 1011$$tIEEE transactions on computational imaging$$v8$$x2333-9403$$y2022
000911182 8564_ $$uhttps://juser.fz-juelich.de/record/911182/files/Invoice_APC600364395.pdf
000911182 8564_ $$uhttps://juser.fz-juelich.de/record/911182/files/Invoice_APC600368218.pdf
000911182 8564_ $$uhttps://juser.fz-juelich.de/record/911182/files/Inverse_Multislice_Ptychography_by_Layer-Wise_Optimisation_and_Sparse_Matrix_Decomposition.pdf$$yOpenAccess
000911182 8767_ $$8APC600364395$$92022-11-09$$a1200185897$$d2022-11-15$$eHybrid-OA$$jZahlung erfolgt$$zUSD 2195,-
000911182 8767_ $$8APC600368218$$92022-11-22$$a1200186243$$d2022-11-23$$ePage charges$$jZahlung erfolgt$$zUSD 1320,-
000911182 909CO $$ooai:juser.fz-juelich.de:911182$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000911182 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184644$$aForschungszentrum Jülich$$b0$$kFZJ
000911182 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185768$$aForschungszentrum Jülich$$b3$$kFZJ
000911182 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174151$$aForschungszentrum Jülich$$b4$$kFZJ
000911182 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171370$$aForschungszentrum Jülich$$b5$$kFZJ
000911182 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165314$$aForschungszentrum Jülich$$b7$$kFZJ
000911182 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000911182 9141_ $$y2022
000911182 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000911182 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000911182 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000911182 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000911182 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000911182 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T COMPUT IMAG : 2021$$d2022-11-11
000911182 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000911182 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000911182 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000911182 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-11
000911182 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000911182 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000911182 920__ $$lyes
000911182 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000911182 980__ $$ajournal
000911182 980__ $$aVDB
000911182 980__ $$aUNRESTRICTED
000911182 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000911182 980__ $$aAPC
000911182 9801_ $$aAPC
000911182 9801_ $$aFullTexts