001     911182
005     20230123110730.0
024 7 _ |a 10.1109/TCI.2022.3218993
|2 doi
024 7 _ |a 2128/32764
|2 Handle
024 7 _ |a WOS:000888957200001
|2 WOS
037 _ _ |a FZJ-2022-04494
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Bangun, Arya
|0 P:(DE-Juel1)184644
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Inverse Multislice Ptychography by Layer-wise Optimisation and Sparse Matrix Decomposition
260 _ _ |a [New York, NY]
|c 2022
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1669206904_30325
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We propose algorithms based on an optimisation method for inverse multislice ptychography in, e.g. electron microscopy. The multislice method is widely used to model the interaction between relativistic electrons and thick specimens. Since only the intensity of diffraction patterns can be recorded, the challenge in applying inverse multislice ptychography is to uniquely reconstruct the electrostatic potential in each slice up to some ambiguities. In this conceptual study, we show that a unique separation of atomic layers for simulated data is possible when considering a low acceleration voltage. We also introduce an adaptation for estimating the illuminating probe. For the sake of practical application, we finally present slice reconstructions using experimental 4D scanning transmission electron microscopy (STEM) data.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
536 _ _ |a moreSTEM - Momentum-resolved Scanning Transmission Electron Microscopy (VH-NG-1317)
|0 G:(DE-HGF)VH-NG-1317
|c VH-NG-1317
|x 1
536 _ _ |a Ptychography 4.0 - Proposal for a pilot project "Information & Data Science" (ZT-I-0025)
|0 G:(DE-HGF)ZT-I-0025
|c ZT-I-0025
|x 2
536 _ _ |a EDARTI - Electron Diffraction Inversion by Artificial Intelligence Approaches (ZT-I-PF-Z5-28)
|0 G:(DE-HGF)ZT-I-PF-Z5-28
|c ZT-I-PF-Z5-28
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Melnykyz, Oleh
|0 P:(DE-HGF)0
|b 1
700 1 _ |a März, Benjamin
|0 P:(DE-Juel1)180986
|b 2
700 1 _ |a Diederichs, Benedikt
|0 P:(DE-Juel1)185768
|b 3
|u fzj
700 1 _ |a Clausen, Alexander
|0 P:(DE-Juel1)174151
|b 4
|u fzj
700 1 _ |a Weber, Dieter
|0 P:(DE-Juel1)171370
|b 5
|u fzj
700 1 _ |a Filbir, Frank
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Muller-Caspary, Knut
|0 P:(DE-Juel1)165314
|b 7
|u fzj
773 _ _ |a 10.1109/TCI.2022.3218993
|g p. 1 - 16
|0 PERI:(DE-600)2806107-X
|p 996 - 1011
|t IEEE transactions on computational imaging
|v 8
|y 2022
|x 2333-9403
856 4 _ |u https://juser.fz-juelich.de/record/911182/files/Invoice_APC600364395.pdf
856 4 _ |u https://juser.fz-juelich.de/record/911182/files/Invoice_APC600368218.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/911182/files/Inverse_Multislice_Ptychography_by_Layer-Wise_Optimisation_and_Sparse_Matrix_Decomposition.pdf
909 C O |o oai:juser.fz-juelich.de:911182
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)184644
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)185768
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)174151
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)171370
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)165314
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2022
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T COMPUT IMAG : 2021
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-11
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21