Conference Presentation (After Call) FZJ-2022-04950

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A multi-perspective approach for exploring the scenario space of future power systems

 ;  ;  ;  ;  ;  ;  ;

2022

International Conference on Operations Research, OR 2022, KarlsruheKarlsruhe, Germany, 6 Sep 2022 - 9 Sep 20222022-09-062022-09-09

Please use a persistent id in citations:

Abstract: There are many possible future energy systems – many of them unforeseen. We explore the range of parameter uncertainty and quantify parameter interrelations to generate multiple scenarios. Only sensible parameter combinations remain as in-puts to an energy system optimization and coupled models. In the past, computa-tional limitations have been a major obstacle to calculate such an enormous space of scenarios. Opposed to that, we use high-performance computing. To utilize the HPC-system efficiently the parallel solver for linear programs PIPS-IPM++ is applied. We integrate it into a tool chain of different components including sce-nario generation, energy system optimization and results evaluation and tackle the challenge of coupling a large diversity of software packages in a fully automated HPC workflow. This enables the calculation of all scenarios in a matter of days. Furthermore, we use a set of 37 indicators to provide a comprehensive assess-ment of the simulated energy systems. In this way, we cover multiple perspec-tives, such as system adequacy, security of supply or behavior of market actors. Whereas scenarios with low spatial resolution do not lead to clear results, higher resolutions do. Yet, we identified three clusters of scenarios, among which a group with high natural gas dependency is found. This allows to study disruptive events like price shocks in a vast parameter space and to identify countermeasures for the long-term.


Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) (POF4-511)
  2. Verbundvorhaben: UNSEEN ' Bewertung der Unsicherheiten in linear optimierenden Energiesystem-Modellen unter Zuhilfenahme Neuronaler Netze, Teilvorhaben: Entwicklung einer integrierten HPC-Workflow Umgebung zur Kopplung von Optimierungsmethoden mit Methode (03EI1004F) (03EI1004F)
  3. ATMLAO - ATML Application Optimization and User Service Tools (ATMLAO) (ATMLAO)

Appears in the scientific report 2022
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Document types > Presentations > Conference Presentations
Workflow collections > Public records
Institute Collections > JSC
Publications database
Open Access

 Record created 2022-11-22, last modified 2025-03-17


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)