000911755 001__ 911755
000911755 005__ 20240712113052.0
000911755 0247_ $$2doi$$a10.1021/acs.chemmater.2c02376
000911755 0247_ $$2Handle$$a2128/33301
000911755 0247_ $$2WOS$$aWOS:000928908600001
000911755 037__ $$aFZJ-2022-05007
000911755 082__ $$a540
000911755 1001_ $$0P:(DE-Juel1)181055$$aStolz, Lukas$$b0$$ufzj
000911755 245__ $$aDifferent Efforts but Similar Insights in Battery R&D: Electrochemical Impedance Spectroscopy vs Galvanostatic (Constant Current) Technique
000911755 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2022
000911755 3367_ $$2DRIVER$$aarticle
000911755 3367_ $$2DataCite$$aOutput Types/Journal article
000911755 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671710070_17992
000911755 3367_ $$2BibTeX$$aARTICLE
000911755 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911755 3367_ $$00$$2EndNote$$aJournal Article
000911755 520__ $$aElectrochemical impedance spectroscopy (EIS) using alternating currents is a widely established technique to investigate kinetic aspects of batteries and their components, though it requires an interruption of battery operation with extra measurement time and effort. In this work, EIS is compared with the conventional galvanostatic (constant current) technique, which is based on direct currents, being the standard operation mode of batteries. Data from constant current measurements not only are representing application conditions but also are automatically and continuously generated during routine charge/discharge processes, i.e., without extra measurement efforts, and do give kinetic insights via the characteristic overvoltage (= resistance-reasoned voltage rise/decrease), as well. In fact, distinguishing between even very similar values for ohmic (RΩ), charge transfer (Rct), and mass transport (Rmt) resistances can be done via analysis of overvoltage data from constant current measurements, as exemplarily demonstrated in symmetric Li||Li and LiNi0.6Mn0.2Co0.2O2 (NMC622)||Li cells with poly(ethylene oxide)-based solid polymer electrolyte, finally proving their validity. From a practical point of view, direct-current methods can be beneficial for R&D of kinetic aspects in batteries, as data is directly obtained and, thus, application-oriented.
000911755 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000911755 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911755 7001_ $$00000-0002-8104-1693$$aGaberšček, Miran$$b1
000911755 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b2$$ufzj
000911755 7001_ $$0P:(DE-Juel1)171865$$aKasnatscheew, Johannes$$b3$$eCorresponding author
000911755 773__ $$0PERI:(DE-600)1500399-1$$a10.1021/acs.chemmater.2c02376$$gVol. 34, no. 23, p. 10272 - 10278$$n23$$p10272 - 10278$$tChemistry of materials$$v34$$x0897-4756$$y2022
000911755 8564_ $$uhttps://juser.fz-juelich.de/record/911755/files/Invoice_APC600364553.pdf
000911755 8564_ $$uhttps://juser.fz-juelich.de/record/911755/files/acs.chemmater.2c02376.pdf$$yOpenAccess
000911755 8767_ $$8APC600364553$$92022-11-09$$a1200186278$$d2022-11-25$$eHybrid-OA$$jZahlung erfolgt$$zUSD 3750,-
000911755 909CO $$ooai:juser.fz-juelich.de:911755$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000911755 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181055$$aForschungszentrum Jülich$$b0$$kFZJ
000911755 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b2$$kFZJ
000911755 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171865$$aForschungszentrum Jülich$$b3$$kFZJ
000911755 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000911755 9141_ $$y2022
000911755 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000911755 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
000911755 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-12
000911755 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000911755 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000911755 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM MATER : 2021$$d2022-11-12
000911755 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
000911755 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bCHEM MATER : 2021$$d2022-11-12
000911755 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000911755 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000911755 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000911755 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000911755 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000911755 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-12$$wger
000911755 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000911755 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000911755 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000911755 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000911755 915pc $$0PC:(DE-HGF)0122$$2APC$$aHelmholtz: American Chemical Society 01/01/2023
000911755 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000911755 9801_ $$aAPC
000911755 9801_ $$aFullTexts
000911755 980__ $$ajournal
000911755 980__ $$aVDB
000911755 980__ $$aUNRESTRICTED
000911755 980__ $$aI:(DE-Juel1)IEK-12-20141217
000911755 980__ $$aAPC
000911755 981__ $$aI:(DE-Juel1)IMD-4-20141217