000911918 001__ 911918
000911918 005__ 20230224084259.0
000911918 0247_ $$2doi$$a10.1021/acsmacrolett.2c00608
000911918 0247_ $$2Handle$$a2128/33673
000911918 0247_ $$2pmid$$a36409674
000911918 0247_ $$2WOS$$aWOS:000889682900001
000911918 037__ $$aFZJ-2022-05165
000911918 082__ $$a540
000911918 1001_ $$0P:(DE-Juel1)180820$$aSharma, Aakash$$b0$$eCorresponding author
000911918 245__ $$aChain Confinement and Anomalous Diffusion in the Cross over Regime between Rouse and Reptation
000911918 260__ $$aWashington, DC$$bACS$$c2022
000911918 3367_ $$2DRIVER$$aarticle
000911918 3367_ $$2DataCite$$aOutput Types/Journal article
000911918 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674018987_8141
000911918 3367_ $$2BibTeX$$aARTICLE
000911918 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911918 3367_ $$00$$2EndNote$$aJournal Article
000911918 520__ $$aBy neutron spin echo (NSE) and pulsed field gradient (PFG) NMR, we study the dynamics of a polyethylene-oxide melt (PEO) with a molecular weight in the transition regime between Rouse and reptation dynamics. We analyze the data with a Rouse mode analysis allowing for reduced long wavelength Rouse modes amplitudes. For short times, subdiffusive center-of-mass mean square displacement ⟨rcom2(t)⟩ was allowed. This approach captures the NSE data well and provides accurate information on the topological constraints in a chain length regime, where the tube model is inapplicable. As predicted by reptation for the polymer ⟨rcom2(t)⟩, we experimentally found the subdiffusive regime with an exponent close to 
000911918 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000911918 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
000911918 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911918 7001_ $$0P:(DE-Juel1)130777$$aKruteva, Margarita$$b1$$eCorresponding author
000911918 7001_ $$0P:(DE-Juel1)130501$$aAllgaier, Jürgen$$b2
000911918 7001_ $$00000-0001-7178-6467$$aHoffmann, Ingo$$b3
000911918 7001_ $$0P:(DE-HGF)0$$aFalus, Peter$$b4
000911918 7001_ $$0P:(DE-Juel1)130849$$aMonkenbusch, Michael$$b5
000911918 7001_ $$0P:(DE-Juel1)130917$$aRichter, Dieter$$b6$$ufzj
000911918 773__ $$0PERI:(DE-600)2644375-2$$a10.1021/acsmacrolett.2c00608$$gp. 1343 - 1348$$n12$$p1343 - 1348$$tACS Macro Letters$$v11$$x2161-1653$$y2022
000911918 8564_ $$uhttps://juser.fz-juelich.de/record/911918/files/acsmacrolett.2c00608.pdf
000911918 8564_ $$uhttps://juser.fz-juelich.de/record/911918/files/Manuscript.pdf$$yPublished on 2022-11-21. Available in OpenAccess from 2023-11-21.
000911918 8564_ $$uhttps://juser.fz-juelich.de/record/911918/files/Supporting%20Information.pdf$$yRestricted
000911918 909CO $$ooai:juser.fz-juelich.de:911918$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000911918 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180820$$aForschungszentrum Jülich$$b0$$kFZJ
000911918 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130777$$aForschungszentrum Jülich$$b1$$kFZJ
000911918 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130501$$aForschungszentrum Jülich$$b2$$kFZJ
000911918 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130849$$aForschungszentrum Jülich$$b5$$kFZJ
000911918 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130917$$aForschungszentrum Jülich$$b6$$kFZJ
000911918 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000911918 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x1
000911918 9141_ $$y2022
000911918 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000911918 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000911918 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-05-04
000911918 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000911918 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS MACRO LETT : 2021$$d2022-11-11
000911918 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000911918 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000911918 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000911918 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000911918 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000911918 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS MACRO LETT : 2021$$d2022-11-11
000911918 920__ $$lyes
000911918 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x0
000911918 980__ $$ajournal
000911918 980__ $$aVDB
000911918 980__ $$aUNRESTRICTED
000911918 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000911918 9801_ $$aFullTexts