000911992 001__ 911992
000911992 005__ 20230224084236.0
000911992 0247_ $$2doi$$a10.3390/fluids7120367
000911992 0247_ $$2Handle$$a2128/32863
000911992 0247_ $$2WOS$$aWOS:000902649500001
000911992 037__ $$aFZJ-2022-05222
000911992 041__ $$aEnglish
000911992 082__ $$a530
000911992 1001_ $$0P:(DE-Juel1)177985$$aRüttgers, Mario$$b0$$ufzj
000911992 245__ $$aNeural Networks for Improving wind Power Efficiency: A Review
000911992 260__ $$aBelgrade$$bMDPI$$c2022
000911992 3367_ $$2DRIVER$$aarticle
000911992 3367_ $$2DataCite$$aOutput Types/Journal article
000911992 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1669704063_12116
000911992 3367_ $$2BibTeX$$aARTICLE
000911992 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911992 3367_ $$00$$2EndNote$$aJournal Article
000911992 520__ $$aThe demand for wind energy harvesting has grown significantly to mitigate the global challenges of climate change, energy security, and zero carbon emissions. Various methods tomaximize wind power efficiency have been proposed. Notably, neural networks have shown large potential in improving wind power efficiency. In this paper, we provide a review of attempts tomaximize wind power efficiency using neural networks. A total of three neural-network-based strategies are covered: (i) neural-network-based turbine control, (ii) neural-network-based wind farmcontrol, and (iii) neural-network-based wind turbine blade design. In the first topic, we introduce neural networks that control the yaw of wind turbines based on wind prediction. Second, we discussneural networks for improving the energy efficiency of wind farms. Last, we review neural networks to design turbine blades with superior aerodynamic performances.
000911992 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000911992 7001_ $$0P:(DE-HGF)0$$aLee, Sangseung$$b1$$eCorresponding author
000911992 7001_ $$0P:(DE-HGF)0$$aShin, Heesoo$$b2
000911992 770__ $$aWind and Wave Renewable Energy Systems, Volume II
000911992 773__ $$0PERI:(DE-600)2882362-X$$a10.3390/fluids7120367$$p12$$tFluids$$v7$$x2311-5521$$y2022
000911992 8564_ $$uhttps://juser.fz-juelich.de/record/911992/files/Neural_Networks_for_Improving_Wind_Power_Efficiency_A_Review.pdf$$yOpenAccess
000911992 909CO $$ooai:juser.fz-juelich.de:911992$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000911992 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177985$$aForschungszentrum Jülich$$b0$$kFZJ
000911992 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)177985$$aRWTH Aachen$$b0$$kRWTH
000911992 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern
000911992 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
000911992 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000911992 9141_ $$y2022
000911992 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000911992 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000911992 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000911992 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-28$$wger
000911992 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-02
000911992 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000911992 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-02
000911992 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000911992 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000911992 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-17T19:23:22Z
000911992 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-17T19:23:22Z
000911992 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-08-17T19:23:22Z
000911992 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000911992 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2022-11-11
000911992 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000911992 920__ $$lno
000911992 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000911992 980__ $$ajournal
000911992 980__ $$aVDB
000911992 980__ $$aUNRESTRICTED
000911992 980__ $$aI:(DE-Juel1)JSC-20090406
000911992 9801_ $$aFullTexts