000911992 001__ 911992 000911992 005__ 20230224084236.0 000911992 0247_ $$2doi$$a10.3390/fluids7120367 000911992 0247_ $$2Handle$$a2128/32863 000911992 0247_ $$2WOS$$aWOS:000902649500001 000911992 037__ $$aFZJ-2022-05222 000911992 041__ $$aEnglish 000911992 082__ $$a530 000911992 1001_ $$0P:(DE-Juel1)177985$$aRüttgers, Mario$$b0$$ufzj 000911992 245__ $$aNeural Networks for Improving wind Power Efficiency: A Review 000911992 260__ $$aBelgrade$$bMDPI$$c2022 000911992 3367_ $$2DRIVER$$aarticle 000911992 3367_ $$2DataCite$$aOutput Types/Journal article 000911992 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1669704063_12116 000911992 3367_ $$2BibTeX$$aARTICLE 000911992 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000911992 3367_ $$00$$2EndNote$$aJournal Article 000911992 520__ $$aThe demand for wind energy harvesting has grown significantly to mitigate the global challenges of climate change, energy security, and zero carbon emissions. Various methods tomaximize wind power efficiency have been proposed. Notably, neural networks have shown large potential in improving wind power efficiency. In this paper, we provide a review of attempts tomaximize wind power efficiency using neural networks. A total of three neural-network-based strategies are covered: (i) neural-network-based turbine control, (ii) neural-network-based wind farmcontrol, and (iii) neural-network-based wind turbine blade design. In the first topic, we introduce neural networks that control the yaw of wind turbines based on wind prediction. Second, we discussneural networks for improving the energy efficiency of wind farms. Last, we review neural networks to design turbine blades with superior aerodynamic performances. 000911992 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0 000911992 7001_ $$0P:(DE-HGF)0$$aLee, Sangseung$$b1$$eCorresponding author 000911992 7001_ $$0P:(DE-HGF)0$$aShin, Heesoo$$b2 000911992 770__ $$aWind and Wave Renewable Energy Systems, Volume II 000911992 773__ $$0PERI:(DE-600)2882362-X$$a10.3390/fluids7120367$$p12$$tFluids$$v7$$x2311-5521$$y2022 000911992 8564_ $$uhttps://juser.fz-juelich.de/record/911992/files/Neural_Networks_for_Improving_Wind_Power_Efficiency_A_Review.pdf$$yOpenAccess 000911992 909CO $$ooai:juser.fz-juelich.de:911992$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000911992 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177985$$aForschungszentrum Jülich$$b0$$kFZJ 000911992 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)177985$$aRWTH Aachen$$b0$$kRWTH 000911992 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern 000911992 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern 000911992 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 000911992 9141_ $$y2022 000911992 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28 000911992 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000911992 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28 000911992 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-28$$wger 000911992 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-02 000911992 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000911992 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-02 000911992 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11 000911992 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11 000911992 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-17T19:23:22Z 000911992 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-17T19:23:22Z 000911992 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-08-17T19:23:22Z 000911992 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11 000911992 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2022-11-11 000911992 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11 000911992 920__ $$lno 000911992 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000911992 980__ $$ajournal 000911992 980__ $$aVDB 000911992 980__ $$aUNRESTRICTED 000911992 980__ $$aI:(DE-Juel1)JSC-20090406 000911992 9801_ $$aFullTexts