000915883 001__ 915883
000915883 005__ 20230104131921.0
000915883 0247_ $$2Handle$$a2128/33365
000915883 037__ $$aFZJ-2022-05753
000915883 1001_ $$0P:(DE-Juel1)192118$$aOld, Josias$$b0$$eCorresponding author
000915883 245__ $$aGeneralized Belief Propagation Algorithms for Decoding of Surface Codes
000915883 260__ $$c2022
000915883 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1672831274_10869
000915883 3367_ $$2ORCID$$aWORKING_PAPER
000915883 3367_ $$028$$2EndNote$$aElectronic Article
000915883 3367_ $$2DRIVER$$apreprint
000915883 3367_ $$2BibTeX$$aARTICLE
000915883 3367_ $$2DataCite$$aOutput Types/Working Paper
000915883 520__ $$aBelief propagation (BP) is well-known as a low complexity decoding algorithm with a strong performance for important classes of quantum error correcting codes, e.g. notably for the quantum low-density parity check (LDPC) code class of random expander codes. However, it is also well-known that the performance of BP breaks down when facing topological codes such as the surface code, where naive BP fails entirely to reach a below-threshold regime, i.e. the regime where error correction becomes useful. Previous works have shown, that this can be remedied by resorting to post-processing decoders outside the framework of BP. In this work, we present a generalized belief propagation method with an outer re-initialization loop that successfully decodes surface codes, i.e. opposed to naive BP it recovers the sub-threshold regime known from decoders tailored to the surface code and from statistical-mechanical mappings. We report a threshold of 17% under independent bit-and phase-flip data noise (to be compared to the ideal threshold of 20.6%) and a threshold value of 14% under depolarizing data noise (compared to the ideal threshold of 18.9%), which are on par with thresholds achieved by non-BP post-processing methods.
000915883 536__ $$0G:(DE-HGF)POF4-5224$$a5224 - Quantum Networking (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000915883 7001_ $$0P:(DE-Juel1)187504$$aRispler, Manuel$$b1
000915883 8564_ $$uhttps://arxiv.org/abs/2212.03214
000915883 8564_ $$uhttps://juser.fz-juelich.de/record/915883/files/2212.03214.pdf$$yOpenAccess
000915883 909CO $$ooai:juser.fz-juelich.de:915883$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000915883 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192118$$aForschungszentrum Jülich$$b0$$kFZJ
000915883 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)192118$$aRWTH Aachen$$b0$$kRWTH
000915883 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187504$$aForschungszentrum Jülich$$b1$$kFZJ
000915883 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5224$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000915883 9141_ $$y2022
000915883 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000915883 920__ $$lyes
000915883 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000915883 9801_ $$aFullTexts
000915883 980__ $$apreprint
000915883 980__ $$aVDB
000915883 980__ $$aUNRESTRICTED
000915883 980__ $$aI:(DE-Juel1)PGI-2-20110106