Preprint FZJ-2022-05753

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Generalized Belief Propagation Algorithms for Decoding of Surface Codes

 ;

2022

Please use a persistent id in citations:

Abstract: Belief propagation (BP) is well-known as a low complexity decoding algorithm with a strong performance for important classes of quantum error correcting codes, e.g. notably for the quantum low-density parity check (LDPC) code class of random expander codes. However, it is also well-known that the performance of BP breaks down when facing topological codes such as the surface code, where naive BP fails entirely to reach a below-threshold regime, i.e. the regime where error correction becomes useful. Previous works have shown, that this can be remedied by resorting to post-processing decoders outside the framework of BP. In this work, we present a generalized belief propagation method with an outer re-initialization loop that successfully decodes surface codes, i.e. opposed to naive BP it recovers the sub-threshold regime known from decoders tailored to the surface code and from statistical-mechanical mappings. We report a threshold of 17% under independent bit-and phase-flip data noise (to be compared to the ideal threshold of 20.6%) and a threshold value of 14% under depolarizing data noise (compared to the ideal threshold of 18.9%), which are on par with thresholds achieved by non-BP post-processing methods.


Contributing Institute(s):
  1. Theoretische Nanoelektronik (PGI-2)
Research Program(s):
  1. 5224 - Quantum Networking (POF4-522) (POF4-522)

Appears in the scientific report 2022
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Document types > Reports > Preprints
Institute Collections > PGI > PGI-2
Workflow collections > Public records
Publications database
Open Access

 Record created 2022-12-12, last modified 2023-01-04


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)