000915901 001__ 915901
000915901 005__ 20240711092238.0
000915901 0247_ $$2doi$$a10.1039/D2GC02906E
000915901 0247_ $$2ISSN$$a1463-9262
000915901 0247_ $$2ISSN$$a1463-9270
000915901 0247_ $$2Handle$$a2128/33717
000915901 0247_ $$2WOS$$aWOS:000888817300001
000915901 037__ $$aFZJ-2022-05770
000915901 041__ $$aEnglish
000915901 082__ $$a540
000915901 1001_ $$0P:(DE-Juel1)177607$$aLebendig, Florian$$b0$$eCorresponding author$$ufzj
000915901 245__ $$aEffect of pre-treatment of herbaceous feedstocks on behavior of inorganic constituents under chemical looping gasification (CLG) conditions
000915901 260__ $$aCambridge$$bRSC$$c2022
000915901 3367_ $$2DRIVER$$aarticle
000915901 3367_ $$2DataCite$$aOutput Types/Journal article
000915901 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674141844_18266
000915901 3367_ $$2BibTeX$$aARTICLE
000915901 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000915901 3367_ $$00$$2EndNote$$aJournal Article
000915901 520__ $$aBiomass chemical looping gasification (BCLG) is a promising key technology for producing carbon neutral liquid biofuels. However, various ash-related issues, such as bed agglomeration, fouling and slagging, or high-temperature corrosion may cause significant economic and ecologic challenges for reliable implementation of BCLG. Biomass pre-treatment methods, such as torrefaction, (water-)leaching and combination of both approaches may significantly improve ash-related characteristics and therefore provide a promising approach for enabling the use of herbaceous residues. This study deals with essential lab-scale investigations under well-defined, gasification-like conditions at 950 °C, joint with thermodynamic equilibrium calculations. Fundamental knowledge on the influence of pre-treatment methods on the release and fate of volatile inorganics as well as on the ash melting behavior of the residual ashes was gained. Molecular Beam Mass Spectrometry (MBMS) was applied for in situ online hot gas analysis of (non-)condensable gas species during gasification of pre-treated feedstocks. Both ash composition and behavior were characterized particularly by X-ray powder diffraction method and hot stage microscopy (HSM). The results obtained by chemical characterization were taken into account for thermodynamic modelling. Based on the results, conclusions were drawn on how different pre-treatment technologies can help to improve and solve ash-related issues during thermochemical conversions. It has been demonstrated that (combined) pre-treatment methods can counteract the above-mentioned problems and have a noticeable effect on the principal inorganic constituents (e.g. K, Ca, Si) originating from the ash by shifting their proportions.
000915901 536__ $$0G:(DE-HGF)POF4-1241$$a1241 - Gas turbines (POF4-124)$$cPOF4-124$$fPOF IV$$x0
000915901 536__ $$0G:(EU-Grant)817841$$aCLARA - Chemical Looping gAsification foR sustainAble production of biofuels (817841)$$c817841$$fH2020-LC-SC3-2018-RES-SingleStage$$x1
000915901 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000915901 7001_ $$0P:(DE-Juel1)129765$$aMüller, Michael$$b1$$ufzj
000915901 773__ $$0PERI:(DE-600)2006274-6$$a10.1039/D2GC02906E$$gp. 10.1039.D2GC02906E$$n24$$p9643-9658 $$tGreen chemistry$$v24$$x1463-9262$$y2022
000915901 8564_ $$uhttps://juser.fz-juelich.de/record/915901/files/d2gc02906e.pdf$$yOpenAccess
000915901 8767_ $$d2023-01-24$$eHybrid-OA$$jPublish and Read$$zRSC
000915901 909CO $$ooai:juser.fz-juelich.de:915901$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire$$qOpenAPC
000915901 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177607$$aForschungszentrum Jülich$$b0$$kFZJ
000915901 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129765$$aForschungszentrum Jülich$$b1$$kFZJ
000915901 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1241$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
000915901 9141_ $$y2022
000915901 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000915901 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25
000915901 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25
000915901 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-25
000915901 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-25
000915901 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bGREEN CHEM : 2021$$d2022-11-25
000915901 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25
000915901 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-25
000915901 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000915901 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-25
000915901 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2022-11-25
000915901 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-25$$wger
000915901 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGREEN CHEM : 2021$$d2022-11-25
000915901 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-25
000915901 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25
000915901 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000915901 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000915901 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000915901 915pc $$0PC:(DE-HGF)0110$$2APC$$aTIB: Royal Society of Chemistry 2021
000915901 920__ $$lyes
000915901 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000915901 9801_ $$aAPC
000915901 9801_ $$aFullTexts
000915901 980__ $$ajournal
000915901 980__ $$aVDB
000915901 980__ $$aUNRESTRICTED
000915901 980__ $$aI:(DE-Juel1)IEK-2-20101013
000915901 980__ $$aAPC
000915901 981__ $$aI:(DE-Juel1)IMD-1-20101013